Page 9 of 11
Journal of the American Chemical Society
(20) Bandara, H. M. D.; Burdette, S. C. Photoisomerization in
Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809-
1825.
research used resources of the Advanced Light Source, which is
a DOE Office of Science User Facility under contract no. DE-
AC02-05CH11231.
1
2
3
4
5
6
7
8
9
(21) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M.
Chiroptical Molecular Switches. Chem. Rev. 2000, 100, 1789-1816.
(22) Guo, X.; Zhou, J.; Siegler, M. A.; Bragg, A. E.; Katz, H. E. Visible-
Light-Triggered Molecular Photoswitch Based on Reversible E/Z
Isomerization of a 1,2-Dicyanoethene Derivative. Angew. Chem. Int.
Edit. 2015, 54, 4782-4786.
(23) Ryabchun, A.; Li, Q.; Lancia, F.; Aprahamian, I.; Katsonis, N.
Shape-Persistent Actuators from Hydrazone Photoswitches. J. Am.
Chem. Soc. 2019, 141, 1196-1200.
(24) Irie, M. Diarylethenes for Memories and Switches. Chem. Rev.
2000, 100, 1685-1716.
(25) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S.
Photochromism of Diarylethene Molecules and Crystals:
Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174-
12277.
REFERENCES
(1) Kamiya, Y.; Asanuma, H. Light-Driven DNA Nanomachine with
a Photoresponsive Molecular Engine. Accounts Chem. Res. 2014, 47,
1663-1672.
(2) Li, X.; Zhai, T.; Gao, P.; Cheng, H.; Hou, R.; Lou, X.; Xia, F. Role of
Outer Surface Probes for Regulating Ion Gating of Nanochannels.
Nat. Commun. 2018, 9, 40.
(3) Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive
Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12, 991-1003.
(4) Zeng, Y.; Lu, J. Q. Optothermally Responsive Nanocomposite
Generating Mechanical Forces for Cells Enabled by Few-Walled
Carbon Nanotubes. ACS Nano 2014, 8, 11695-11706.
(5) Lancia, F.; Ryabchun, A.; Nguindjel, A.-D.; Kwangmettatam, S.;
Katsonis, N. Mechanical Adaptability of Artificial Muscles from
Nanoscale Molecular Action. Nat. Commun. 2019, 10, 4819.
(6) Li, C. S.; Liu, Y.; Huang, X. Z.; Jiang, H. R. Direct Sun-Driven
Artificial Heliotropism for Solar Energy Harvesting Based on a
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) Klajn, R. Spiropyran-based Dynamic Materials. Chem. Soc. Rev.
2014, 43, 148-184.
(27) de Villeneuve, C. H.; Michalik, F.; Chazalviel, J. N.; Rück-Braun,
K.; Allongue, P. Quantitative IR Readout of Fulgimide Monolayer
Switching on Si(111) Surfaces. Adv. Mater. 2013, 25, 416-421.
(28) Yokoyama, Y. Fulgides for Memories and Switches. Chem. Rev.
2000, 100, 1717-1740.
(29) Goulet-Hanssens, A.; Eisenreich, F.; Hecht, S. Enlightening
Materials with Photoswitches. Adv. Mater. 2020, 32, 1905966.
(30) Pianowski, Z. L. Recent Implementations of Molecular
Photoswitches into Smart Materials and Biological Systems. Chem.-
Eur. J. 2019, 25, 5128-5144.
(31) Dong, M.; Babalhavaeji, A.; Collins, C. V.; Jarrah, K.; Sadovski,
O.; Dai, Q.; Woolley, G. A. Near-Infrared Photoswitching of
Azobenzenes under Physiological Conditions. J. Am. Chem. Soc.
2017, 139, 13483-13486.
(32) Hammerich, M.; Schütt, C.; Stähler, C.; Lentes, P.; Röhricht, F.;
Höppner, R.; Herges, R. Heterodiazocines: Synthesis and
Photochromic Properties, Trans to Cis Switching within the Bio-
optical Window. J. Am. Chem. Soc. 2016, 138, 13111-13114.
(33) Zulfikri, H.; Koenis, M. A. J.; Lerch, M. M.; Di Donato, M.;
Szymanski, W.; Filippi, C.; Feringa, B. L.; Buma, W. J. Taming the
Complexity of Donor-Acceptor Stenhouse Adducts: Infrared
Motion Pictures of the Complete Switching Pathway. J. Am. Chem.
Soc. 2019, 141, 7376-7384.
(34) Lerch, M. M.; Szymanski, W.; Feringa, B. The (Photo)Chemistry
Of Stenhouse Photoswitches: Guiding Principles And System
Design. Chem. Soc. Rev. 2018, 47, 1910-1937.
(35) Yoshino, T.; Kondo, M.; Mamiya, J.-i.; Kinoshita, M.; Yu, Y.;
Ikeda, T. Three-Dimensional Photomobility of Crosslinked
Azobenzene Liquid-Crystalline Polymer Fibers. Adv. Mater. 2010,
22, 1361-1363.
(36) Perutz, M. F. Mechanisms Regulating the Reactions of Human
Hemoglobin With Oxygen and Carbon Monoxide. Annu. Rev.
Physiol. 1990, 52, 1-26.
(37) Li, J.; Ning, Y.; Hedley, W.; Saunders, B.; Chen, Y.; Tindill, N.;
Hannay, T.; Subramaniam, S. The Molecule Pages database. Nature
2002, 420, 716-717.
Photo-Thermomechanical
Liquid-Crystal
Elastomer
Nanocomposite. Adv. Funct. Mater. 2012, 22, 5166-5174.
(7) Aßhoff, S. J.; Lancia, F.; Iamsaard, S.; Matt, B.; Kudernac, T.;
Fletcher, S. P.; Katsonis, N. High-Power Actuation from Molecular
Photoswitches in Enantiomerically Paired Soft Springs. Angew.
Chem. Int. Edit. 2017, 56, 3261-3265.
(8) White, T. J.; Broer, D. J. Programmable and Adaptive Mechanics
with Liquid Crystal Polymer Networks and Elastomers. Nat. Mater.
2015, 14, 1087-1098.
(9) Cadogan, D.; Scarborough, S., Rigidizable Materials for Use in
Gossamer Space Inflatable Structures. In 19th AIAA Applied
Aerodynamics Conference.
(10) Rossiter, J.; Takashima, K.; Scarpa, F.; Walters, P.; Mukai, T.
Shape Memory Polymer Hexachiral Auxetic Structures with
Tunable Stiffness. Smart Mater. Struct. 2014, 23, 045007.
(11) Takashima, K.; Sugitani, K.; Morimoto, N.; Sakaguchi, S.;
Noritsugu, T.; Mukai, T. Pneumatic Artificial Rubber Muscle Using
Shape-Memory Polymer Sheet With Embedded Electrical Heating
Wire. Smart Mater. Struct. 2014, 23.
(12) Hou, L.; Zhang, X.; Cotella, G. F.; Carnicella, G.; Herder, M.;
Schmidt, B. M.; Pätzel, M.; Hecht, S.; Cacialli, F.; Samorì, P. Optically
Switchable Organic Light-Emitting Transistors. Nat. Nanotechnol.
2019, 14, 347-353.
(13) Leydecker, T.; Herder, M.; Pavlica, E.; Bratina, G.; Hecht, S.;
Orgiu, E.; Samorì, P. Flexible Non-Volatile Optical Memory Thin-
Film Transistor Device with over 256 Distinct Levels Based on An
Organic Bicomponent Blend. Nat. Nanotechnol. 2016, 11, 769-775.
(14) Schmittel, M.; De, S.; Pramanik, S. Reversible ON/OFF
Nanoswitch for Organocatalysis: Mimicking the Locking and
Unlocking Operation of CaMKII. Angew. Chem. Int. Edit. 2012, 51,
3832-3836.
(15) Landge, S. M.; Aprahamian, I. A pH Activated Configurational
Rotary Switch: Controlling the E/Z Isomerization in Hydrazones. J.
Am. Chem. Soc. 2009, 131, 18269-18271.
(38) Ugur, G.; Chang, J.; Xiang, S.; Lin, L.; Lu, J. A Near-Infrared
Mechano Responsive Polymer System. Adv. Mater. 2012, 24, 2685-
2690.
(16) Harris, J. D.; Moran, M. J.; Aprahamian, I. New Molecular Switch
Architectures. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9414-9422.
(17) Collins, B. S. L.; Kistemaker, J. C. M.; Otten, E.; Feringa, B. L. A
Chemically Powered Unidirectional Rotary Molecular Motor Based
on A Palladium Redox Cycle. Nat. Chem. 2016, 8, 860-866.
(18) Yin, X.; Zang, Y.; Zhu, L.; Low, J. Z.; Liu, Z.-F.; Cui, J.; Neaton, J.
B.; Venkataraman, L.; Campos, L. M. A Reversible Single-Molecule
Switch Based on Activated Antiaromaticity. Sci Adv 2017, 3,
eaao2615.
(39) Shen, X.; Viney, C.; Johnson, E. R.; Wang, C.; Lu, J. Q. Large
Negative Thermal Expansion of
A Polymer Driven by A
Submolecular Conformational Change. Nat. Chem. 2013, 5, 1035-
1041.
(40) Shen, X.; Connolly, T.; Huang, Y.; Colvin, M.; Wang, C.; Lu, J.
Adjusting Local Molecular Environment for Giant Ambient
Thermal Contraction. Macromol. Rapid Commun. 2016, 37, 1904-
1911.
(19) Liu, Y.; Flood, A. H.; Stoddart, J. F. Thermally and
Electrochemically Controllable Self-Complexing Molecular
Switches. J. Am. Chem. Soc. 2004, 126, 9150-9151.
(41) Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J. P.;
Fuchter, M. J. Arylazopyrazoles: Azoheteroarene Photoswitches
ACS Paragon Plus Environment