Photochemistry and Photobiology
9
16. Shi, Q., D. Yang, Z. Jiang and J. Li (2006) Visible-light photocat-
alytic regeneration of NADH using P-doped TiO2 nanoparticles. J.
Mol. Catal. B: Enzym. 43, 44–48.
17. Wang, Z.-W., Q. Wan, Y.-Z. Shi, H. Wang, Y.-Y. Kang, S.-Y. Zhu,
S. Lin and L. Wu (2021) Selective photocatalytic reduction CO2 to
CH4 on ultrathin TiO2 nanosheet via coordination activation. Appl.
Catal. B 288, 120000.
18. Ou, H., P. Yang, L. Lin, M. Anpo and X. Wang (2017) Carbon
nitride aerogels for the photoredox conversion of water. Angew.
Chem. Int. Ed. 56, 10905–10910.
19. Wang, Y., H. Liu, Q. Pan, C. Wu, W. Hao, J. Xu, R. Chen, J. Liu,
Z. Li and Y. Zhao (2020) Construction of fully conjugated covalent
organic frameworks via facile linkage conversion for efficient pho-
toenzymatic catalysis. J. Am. Chem. Soc. 142, 5958–5963.
20. Yadav, R. K., A. Kumar, N.-J. Park, K.-J. Kong and J.-O. Baeg
(2016) A highly efficient covalent organic framework film photocata-
lyst for selective solar fuel production from CO2. J. Mater. Chem. A.
4, 9413–9418.
21. Faury, T., F. Dumur, S. Clair, M. Abel, L. Porte and D. Gigmes
(2013) Side functionalization of diboronic acid precursors for cova-
lent organic frameworks. CrystEngComm 15, 2067–2075.
22. A. Cote, P., A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger
and O. M. Yaghi (2005) Porous, crystalline, covalent organic frame-
works. Science 310, 1166–1170.
23. Ding, S.-Y. and W. Wang (2013) Covalent organic frameworks
(COFs): From design to applications. Chem. Soc. Rev. 42, 548–568.
24. Feng, X., X. Ding and D. Jiang (2012) Covalent organic frame-
works. Chem. Soc. Rev. 41, 6010–6022.
25. Yu, F., W. Liu, B. Li, D. Tian, J.-L. Zuo and Q. Zhang (2019)
Photo-stimulus-responsive large-area two-dimensional covalent-
organic framework films. Angew. Chem. Int. Ed. 58, 16101–16104.
26. Zhi, Y., Z. Wang, H.-L. Zhang and Q. Zhang (2020) Recent pro-
gress in metal-free covalent organic frameworks as heterogeneous
catalysts. Small 16, 2001070.
27. Yu, F., W. Liu, S.-W. Ke, M. Kurmoo, J.-L. Zuo and Q. Zhang
(2020) Electrochromic two-dimensional covalent organic framework
with a reversible dark-to-transparent switch. Nat. Commun. 11, 5534.
28. Sun, T., J. Xie, W. Guo, D.-S. Li and Q. Zhang (2020) Covalent-
organic frameworks: Advanced organic electrode materials for
rechargeable batteries. Adv. Energy Mater. 10, 1904199.
29. Xu, S. and Q. Zhang (2021) Recent progress in covalent organic frame-
works as light-emitting materials. Mater. Today Energy 20, 100635.
30. Puthiaraj, P., Y.-R. Lee, S. Zhang and W.-S. Ahn (2016) Triazine-
based covalent organic polymers: Design, synthesis and applications
in heterogeneous catalysis. J. Mater. Chem. A. 4, 16288–16311.
31. Bi, J., W. Fang, L. Li, J. Wang, S. Liang, Y. He, M. Liu and L. Wu
(2015) Covalent triazine-based frameworks as visible light photocata-
lysts for the splitting of water. Macromol. Rapid Commun. 36,
1799–1805.
32. Wang, Z., C. Liu, Y. Huang, Y. Hu and B. Zhang (2016) Covalent
triazine framework-supported palladium as a ligand-free catalyst for
the selective double carbonylation of aryl iodides under ambient
pressure of CO. Chem. Commun. 52, 2960–2963.
33. Bavykina, A. V., E. Rozhko, M. G. Goesten, T. Wezendonk, B.
Seoane, F. Kapteijn, M. Makkee and J. Gascon (2016) Shaping
covalent triazine frameworks for the hydrogenation of carbon dioxide
to formic acid. ChemCatChem. 8, 2217–2221.
38. Liu, M., L. Guo, S. Jin and B. Tan (2019) Covalent triazine frame-
works: Synthesis and applications. J. Mater. Chem. A 7, 5153–5172.
39. Jiang, X., P. Wang and J. Zhao (2015) 2D covalent triazine frame-
work: A new class of organic photocatalyst for water splitting. J.
Mater. Chem. A 3, 7750–7758.
40. Morra, S. and A. Pordea (2018) Biocatalyst – artificial metalloen-
zyme cascade based on alcohol dehydrogenase. Chem. Sci. 9, 7447–
7454.
41. Surur, A. S., L. Schulig and A. Link (2019) Interconnection of sul-
fides and sulfoxides in medicinal chemistry. Arch. Pharm. Chem.
Life Sci. 352, 1800248.
ꢁ
ꢁ
42. Wojaczynska, E. and J. Wojaczynski (2010) Enantioselective synthe-
sis of sulfoxides: 2000–2009. Chem. Rev. 110, 4303–4356.
43. Choudhury, S., J.-O. Baeg, N.-J. Park and R. K. Yadav (2012) A
Photo-catalyst/enzyme couple that uses solar energy in the asymmet-
ric reduction of acetophenones. Angew. Chem. Int. Ed. 51, 11624–
11628.
44. Yadav, R. K., J.-O. Baeg, G. H. Oh, N.-J. Park, K.-J. Kong, J. Kim,
D. W. Hwang and S. K. Biswas (2012) A photocatalystÀenzyme
coupled artificial photosynthesis system for solar energy in produc-
tion of formic acid from CO2. J. Am. Chem. Soc. 134, 11455–
11461.
45. Liu, M., Q. Huang, S. Wang, Z. Li, B. Li, S. Jin and B. Tan (2018)
Crystalline covalent triazine frameworks by in-situ oxidation of alco-
hols to aldehyde monomers. Angew. Chem. Int. Ed. 57, 11968–
11972.
46. Sarkar, P., S. K. Riyajuddin, A. Das, A. Hazra Chowdhury, K.
Ghosh and S. M. Islam (2020) Mesoporous covalent organic frame-
work: An active photocatalyst for formic acid synthesis through car-
bon dioxide reduction under visible light. Mol. Catal. 484, 110730.
47. Tanaka, D., S. Sawai, D. H. Yoon, T. Sekiguchi, T. Akitsu and S.
Shoji (2017) Synthesis of an Azo-Mn (II) complex with mild pH
control using a microfluidic device. RSC Adv. 7, 39576–39582.
48. Wan, W., H. Lee, X. Yu, C. Wang, K.-W. Nam, X.-Q. Yang and H.
Zhou (2014) Tuning the electrochemical performances of anthraqui-
none organic cathode materials for Li-ion batteries through the sul-
fonic sodium functional group. RSC Adv. 4, 19878–19882.
49. Vyas, V. S., F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C.
Ochsenfeld and B. V. Lotsch (2015) A tunable azine covalent
organic framework platform for visible light-induced hydrogen gen-
eration. Nat. Commun. 6, 8508.
50. Kumru, B., M. Antonietti and B. V. K. J. Schmidt (2017) Enhanced
dispersibility of graphitic carbon nitride particles in aqueous and
organic media via a one-pot grafting approach. Langmuir 33, 9897–
9906.
51. Dodd, A. C., A. J. McKinley, M. Saunders and T. Tsuzuki (2006)
Effect of particle size on the photocatalytic activity of nanoparticu-
late zinc oxide. J. Nanoparticle Res. 8, 43–51.
52. Kang, H., H. Liu, C. Li, L. Sun, C. Zhang, H. Gao, J. Yin, B. Yang,
Y. You, K.-C. Jiang, H. Long and S. Xin (2018) Polyanthraquinone-
triazine - a promising anode material for high-energy lithium-ion bat-
tery. ACS Appl. Mater. Interfaces 10, 37023–37030.
53. Choudhury, S., J.-O. Baeg, N.-J. Park and R. K. Yadav (2014) A
Solar light-driven, eco-friendly protocol for highly enantioselective
synthesis of chiral alcohols via photocatalytic/biocatalytic cascades.
Green Chem. 16, 4389–4400.
54. Cimino, P., A. Troiani, F. Pepi, S. Garzoli, C. Salvitti, B. D. Rienzo,
V. Barone and A. Ricci (2018) From ascorbic acid to furan deriva-
tives: The gas phase acid catalyzed degradation of vitamin C. Phys.
Chem. Chem. Phys. 20, 17132–17140.
34. Liu, J., Y. Hu and J. Cao (2015) Covalent triazine-based frameworks
as efficient metal-free electrocatalysts for oxygen reduction reaction
in alkaline media. Catal. Commun. 66, 91–94.
35. Liu, L., P.-Z. Li, L. Zhu, R. Zou and Y. Zhao (2013) Microporous
polymelamine network for highly selective CO2 adsorption. Polymer
54, 596–600.
36. Hug, S., M. B. Mesch, H. Oh, N. Popp, M. Hirscher, J. Senker and
B. V. Lotsch (2014) Fluorene based covalent triazine framework
with high CO2 and H2 capture and storage capacities. J. Mater.
Chem. A. 2, 5928–5936.
37. Sun, T., C. Wang and Y. Xu (2020) Covalent triazine framework
nanosheets for efficient energy storage and conversion. Chem. Res.
Chin. Univ. 36, 640–647.
55. Ganesan, V., D. Sivanesan and S. Yoon (2017) Correlation between
the structure and catalytic activity of [Cp*Rh(Substituted Bipyri-
dine)] complexes for NADH regeneration. Inorg. Chem. 56, 1366–
1374.
56. DeRosa, M. C. and R. J. Crutchley (2002) Photosensitized singlet
oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371.
57. Blacha-Grzechnik, A., A. Drewniak, K. Z. Walczak, M. Szindler and
P. Ledwon (2020) Efficient generation of singlet oxygen by perylene
diimide photosensitizers covalently bound to conjugate polymers. J.
Photochem. Photobiol. A 388, 112161.