Angewandte
Chemie
nucleophilicity of the carbon atom by more than ten units on
the logarithmic N-scale (Scheme 5).
Scheme 5. Nucleophilicity parameters of CNꢀ and alkly and aryl
isocyanides.
Additional work is needed to elucidate whether the
nucleophilicity parameters s and N of isocyanides can also be
applied to SN2 reactions as previously shown for the
nucleophilicity parameters of alcohols, amines, phosphanes,
and some carbanions.[10]
Figure 2. Plots of lgk2 (CH2Cl2, 208C) for the reactions of the isocya-
nides 1a–e with benzhydrylium ions 2a–h versus their electrophilicity
parameters E.
Received: December 22, 2006
Published online: March 30, 2007
Table 2 and Figure 2 show that tert-butyl isocyanide (1a) is
the most reactive nucleophile in this series, followed by benzyl
isocyanide (1b) and 2,6-dimethylphenyl isocyanide (1c).
Remarkably, the acceptor-substituted isocyanides 1d and 1e
are only one to two orders of magnitude less nucleophilic than
the isocyanides 1a–c, which bear only hydrocarbon moieties.
Therefore, it can be expected that the nucleophilicities of
most isocyanides are in this range, comparable to the
reactivities of furans, pyrroles, allylsilanes, and silyl enol
ethers (Scheme 4). This ranking is in good agreement with the
Keywords: carbocations · isocyanides · kinetics · nitrilium ions ·
.
reactivity
[1]Reviews: a) I. Ugi, S. Lohberger, R. Karl in Comprehensive
Organic Synthesis, Vol. 2 (Ed.: C. H. Heathcock), Pergamon,
Oxford, 1991, pp. 1083 – 1109; b) A. Dömling, Chem. Rev. 2006,
106, 17 – 89; c) L. Banfi, R. Riva, Org. React. 2005, 65, 1 – 140;
d) M. Suginome, Y. Ito in Science of Synthesis, Vol. 19, Thieme,
Stuttgart, 2004, pp. 445 – 530; e) S.-I. Murahashi in Science of
Synthesis, Vol. 19, Thieme, Stuttgart, 2004, pp. 1 – 16; f) V. Nair,
C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen,
L. Balagopal, Acc. Chem. Res. 2003, 36, 899 – 907; g) R. V. A.
Orru, M. de Greef, Synthesis 2003, 1471 – 1499; h) J. Zhu, Eur. J.
Org. Chem. 2003, 1133 – 1144; i) C. Rꢀchardt, M. Meier, K. Haaf,
J. Pakusch, E. K. A. Wolber, B. Mꢀller, Angew. Chem. 1991, 103,
907 – 915; Angew. Chem. Int. Ed. Engl. 1991, 30, 893 – 901; j) I.
Ugi, B. Werner, A. Dömling, Molecules 2003, 8, 53 – 66; k) G.
Dyker in Organic Synthesis Highlights IV (Ed.: H.-G. Schmalz),
Wiley-VCH, Weinheim, 2000, pp. 53 – 57; l) I. Ugi, Pure Appl.
Chem. 2001, 73, 187 – 191; m) A. Dömling, I. Ugi, Angew. Chem.
2000, 112, 3300 – 3344; Angew. Chem. Int. Ed. 2000, 39, 3168 –
3210.
[2]J. Campo, M. Garcia-Valverde, S. Marcaccini, M. J. Rojo, T.
Torroba, Org. Biomol. Chem. 2006, 4, 757 – 765.
[3]Proton affinities: a) J. S. Knight, C. G. Freeman, M. J. McEwan,
J. Am. Chem. Soc. 1986, 108, 1404 – 1408; b) J. E. Del Bene, J.
Am. Chem. Soc. 1993, 115, 1610 – 1611; c) M. Meot-Ner, Z.
Karpas, C. A. Deakyne, J. Am. Chem. Soc. 1986, 108, 3913 –
3919.
Scheme 4. Comparison of the nucleophilicities of isocyanides 1a–e
and other C nucleophiles (N parameters of the other nucleophiles
from Refs. [6,7]).
[4]Kinetics of acid-catalyzed hydrolysis: a) Y. Y. Lim, A. R. Stein,
Can. J. Chem. 1971, 49, 2455 – 2459; b) K. Sung, C.-C. Chen,
Tetrahedron Lett. 2001, 42, 4845 – 4848.
[5]Hydrogen-bond-donor abilities: a) A. C. Legon, J. Chem. Soc.
Perkin Trans. 2 1992, 329 – 330; b) M. Meot-Ner, L. W. Sieck,
K. K. Koretke, C. A. Deakyne, J. Am. Chem. Soc. 1997, 119,
10430 – 10438.
[6]a) R. Lucius, R. Loos, H. Mayr, Angew. Chem. 2002, 114, 97 –
102; Angew. Chem. Int. Ed. 2002, 41, 91 – 95; b) H. Mayr, B.
Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66 – 77; c) H.
Mayr, A. R. Ofial in Carbocation Chemistry (Eds.: G. A. Olah,
G. K. S. Prakash), Wiley, Hoboken, NJ, 2004, Chap. 13, pp. 331 –
358; d) H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 77, 1807 –
relative proton affinities of these compounds: Meot-Ner et al.
determined proton affinities of 868 kJmolꢀ1 for tert-butyl
isocyanide (1a) and 867 kJmolꢀ1 for PhNC,[3c] values similar
to those reported for 2-methylfuran (866 kJmolꢀ1) and
pyrrole (875 kJmolꢀ1).[11]
Analogous kinetic investigations have recently yielded a
nucleophilicity parameter of N = 16.3 for free CNꢀ in
acetonitrile solution,[12] showing that attachment of an alkyl
or aryl group to the N terminus of the cyanide ion reduces the
Angew. Chem. Int. Ed. 2007, 46, 3563 –3566
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3565