Angewandte
Chemie
The increase of CH pressure (up to 12atm in our work)
[7] a) M. Asadullah, T. Kitamura, Y. Fujiwara, Angew. Chem. 2000,
12, 2609; Angew. Chem. Int. Ed. 2000, 39, 2 475; b) M.
Asadullah, T. Kitamura, Y. Fujiwara, Appl. Organomet. Chem.
999, 13, 539.
4
1
can have a notorious enhancing effect on the TONs (en-
tries 5–7 and 17, 18), whereas the yield tends to decrease after
reaching a maximum (entries 5–7). Higher yields can be
1
[
[
8] M. Asadullah, T. Kitamura, Y. Fujiwara, Chem. Lett. 1999, 449.
9] G. V. Nizova, G. Sꢀss-Fink, S. Stanislas, G. B. Shul'pin, Chem.
Commun. 1998, 1885.
obtained when less CH is used but at the same pressure (e.g.,
4
entry 8 vs. 4 and entry 15 vs. 14), or when more metal catalyst
is employed (entry 9 vs. 3).
[10] a) M. Lin, A. Sen, Nature 1994, 368, 613; b) M. Lin, A. Sen, J.
Chem. Soc. Chem. Commun. 1992, 892.
11] A. Bagno, J. Bukala, G. A. Olah, J. Org. Chem. 1990, 55, 4284.
12] a) D.-G. Piao, K. Inoue, H. Shibasaki, Y. Taniguchi, T. Kitamura,
Y. Fujiwara, J. Organomet. Chem. 1999, 574, 116; b) G. Yin, D.-
G. Piao, T. Kitamura, Y. Fujiwara, Appl. Organomet. Chem.
The reaction does not occur in the absence of K S O ,
2
2
8
[
[
CF COOH (which is replaced by ethanol or water as the
3
solvent), or the V catalyst. Related complexes with other
metals, even of the same periodic group, display little or no
catalytic activity. The carboxylation by CO is also strongly
2000, 14, 438.
hampered when acetonitrile is used instead of CF COOH.
[13] a) G. B. Shul'pin, J. Mol. Catal. A 2002, 189, 39; b) G. B. Shul'pin,
Y. N. Kozlov, G. V. Nizova, G. Sꢀss-Fink, S. Stanislas, A.
Kitaygorodskiy, V. S. Kulikova, J. Chem. Soc. Perkin Trans. 2
3
This direct one-pot synthesis of CH COOH from CH4
3
without required CO is a process whose simplicity and low
energy requirements contrast with the features of the
2001, 1351.
[
14] D. C. Crans, H. Chen, O. P. Anderson, M. M. Miller, J. Am.
Chem. Soc. 1993, 115, 6769.
15] R. E. Berry, E. M. Armstrong, R. L. Beddoes, D. Collison, S. N.
Ertok, M. Helliwell, C. D. Garner, Angew. Chem. 1999, 111, 871;
Angew. Chem. Int. Ed. 1999, 38, 795.
[
4e]
industrial route. The established synthesis involves three
separate stages: the metal-catalyzed high-temperature steam-
[
reforming of CH , conversion of the derived synthesis gas to
4
CH OH, and final carboxylation of CH OH with CO and
3
3
either an expensive Rh catalyst (Monsanto process) or an Ir
catalyst (BP–Amoco modified process). The route we now
report has also the advantage of requiring a cheap V catalyst,
but we are still searching for less expensive solvents,
carboxylating agents, and oxidants. The V catalysts used in
this work are also effective in the carboxylation of other
[16] P. Caravan, L. Gelmini, N. Glover, F. G. Herring, H. Li, J. H.
McNeill, S. J. Rettig, I. A. Setyawati, E. Shuter, Y. Sun, A. S.
Tracey, V. G. Yuen, C. Orvig, J. Am. Chem. Soc. 1995, 117, 12759.
[
17] C. T. Chen, J. H. Kuo, C. H. Li, N. B. Barhate, S. W. Hon, T. W.
Li, S. D. Chao, C. C. Liu, Y. C. Li, I. H. Chang, J. S. Lin, C. J. Liu,
Y. C. Chou, Org. Lett. 2001, 3, 3729.
[
18] B. J. Hamstra, A. L. P. Houseman, G. J. Colpas, J. W. Kampf, R.
LoBrutto, W. D. Frasch, V. L. Pecoraro, Inorg. Chem. 1997, 36,
4866.
alkanes apart from CH to give the corresponding carboxylic
4
acids, and the study of these catalytic reactions is underway.
Of particular interest is the behavior of amavadine, whose
catalytic activity is now extended to such interesting reactions.
Can they take place in natural conditions and also be of
biological significance?
Received: September 24, 2002 [Z50224]
[
1] a) J. J. R. Frafflsto da Silva, R. J. P. Williams, The Biological
Chemistry of the Elements, 2nd ed., Clarendon Press, Oxford,
2001; b) “Vanadium Compounds”: ACS Symp. Ser. 1998, 711;
c) D. Rehder, Coord. Chem. Rev. 1999, 182, 297.
2] a) C. M. M. Matoso, A. J. L. Pombeiro, J. J. R. Frafflsto da Silva,
M. F. C. G. da Silva, J. A. L. Silva, J. L. Baptista-Ferreira, F.
Pinho-Almeida, ACS Symp. Ser. 1998, 711, 241 – 247;
b) M. F. C. G. da Silva, J. A. L. Silva, J. J. R. Frafflsto da Silva,
A. J. L. Pombeiro, C. Amatore, J.-N. Verpeaux, J. Am. Chem.
Soc. 1996, 118, 7568.
[
[
3] P. M. Reis, J. A. L. Silva, J. J. R. Frµusto da Silva, A. J. L. Pom-
beiro, Chem. Commun. 2000, 1845.
[
4] a) C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34,
633; b) R. H. Crabtree, J. Chem. Soc. Dalton Trans. 2001, 2437;
c) A. E. Shilov, G. B. Shul'pin, Chem. Rev. 1997, 97, 2879; d) Y.
Fujiwara, K. Takaki, Y. Taniguchi, Synlett 1996, 591; e) Catalytic
Activation and Functionalisation of Light Alkanes (Eds.: E. G.
Derouane, J. Haber, F. Lemos, F. R. Ribeiro, M. Guisnet),
Kluwer, Dordrecht, 1998; e) R. H. Crabtree, The Organometal-
lic Chemistry of the Transition Metals, Wiley, New York, 2001,
chap. 12.
[
5] Y. Taniguchi, T. Hayashida, H. Shibasaki, D.-G. Piao, T.
Kitamura, T. Yamaji, Y. Fujiwara, Org. Lett. 1999, 1, 557.
6] a) T. Nishiguchi, K. Nakata, K. Takaki, Y. Fujiwara, Chem. Lett.
[
1992, 1141; b) M. Asadullah, Y. Taniguchi, T. Kitamura, Y.
Fujiwara, Appl. Catal. A 2000, 194–195, 443.
Angew. Chem. Int. Ed. 2003, 42, No. 7
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1433-7851/03/4207-0823 $ 20.00+.50/0
823