Journal of the American Chemical Society
Page 8 of 16
(18): Lee B.; Sun S.; Jiménez-Moreno E.; Neves A. A.; Bernardes G. J.
strategy to expressed proteins reveal a potential α-globin-modulating
L. Site-selective installation of an electrophilic handle on proteins for
bioconjugation. Bioorg. Med. Chem. 2018, 15, 3060-3064.
(19): Yin X.-G.; Gao X.-F.; Du J.-J.; Zhang X.-K.; Chen X.-Z.; Wang
J.; Xin L.-M.; Lei Z.; Liu Z.; Guo J. Preparation of protein conjugates via
homobifunctional diselenoester cross-linker. Org. Lett. 2016, 18, 5796-
5799.
(20): Holm L.; Moody P.; Howarth M. Electrophilic affibodies
forming covalent bonds to protein targets. J. Biol. Chem. 2009, 284,
32906-32913.
(21): Singh S. K.; Sahu I.; Mali S. M.; Hemantha H. P.; Kleifeld O.;
Glickman M. H.; Brik A. Synthetic uncleavable ubiquitinated proteins
dissect proteasome deubiquitination and degradation, and highlight
distinctive fate of tetraubiquitin. J. Am. Chem. Soc. 2016, 138, 16004-
16015.
(22): Kubota K.; Dai P.; Pentelute B. L.; Buchwald S. L. Palladium
oxidative addition complexes for peptide and protein cross-linking. J. Am.
Chem. Soc. 2018, 140, 3128-3133.
(23): Hudak J. E.; Barfield R. M.; de Hart G. W.; Grob P.; Nogales E.;
Bertozzi C. R.; Rabuka D. Synthesis of heterobifunctional protein fusions
using copper-free click chemistry and the aldehyde tag. Angew. Chem.
Int. Ed. 2012, 51, 4161-4165.
(24): Chatterjee C.; McGinty R. K.; Fierz B.; Muir T. W. Disulfide-
directed histone ubiquitylation reveals plasticity in hDot1L activation.
Nat. Chem. Biol. 2010, 6, 267-269.
(25): Chen J.; Ai Y.; Wang J.; Haracska L.; Zhuang Z. Chemically
ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis.
Nat. Chem. Biol. 2010, 6, 270-272.
(26): Meier F.; Abeywardana T.; Dhall A.; Marotta N. P.; Varkey J.;
Langen R.; Chatterjee C.; Pratt M. R. Semisynthetic, site-specific
ubiquitin modification of α-synuclein reveals differential effects on
aggregation. J. Am. Chem. Soc. 2012, 134, 5468-5471.
(27): Powis G, Montfort W. R. Properties and biological activities of
thioredoxins. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 261-295.
(28): Chalker J. M.; Gunnoo S. B.; Boutureira O.; Gerstberger S. C.;
Fernández-González M.; Bernardes G. J. L.; Griffin L.; Hailu H.;
Schofield C. J.; Davis B. G. Methods for converting cysteine to
dehydroalanine on peptides and proteins. Chem. Sci. 2011, 2, 1666-
1676.
(29): Chalker J. M.; Lercher L.; Rose N. R.; Schofield C. J.; Davis B.
G. Conversion of cysteine into dehydroalanine enables access to
synthetic histones bearing diverse post-translational modifications.
Angew. Chem. Int. Ed. 2012, 51, 1835-1839.
(30): Freedy A. M.; Matos M. J.; Boutureira O.; Corzana F.; Guerreiro
A.; Akkapeddi P.; Somovilla V. J.; Rodrigues T.; Nicholls K.; Xie B.;
Jiménez-Osés G.; Brindle K. M.; Neves A. A.; Bernardes G. J. L.
Chemoselective installation of amine bonds on proteins through aza-
Michael ligation. J. Am. Chem. Soc. 2017, 139, 18365-18375.
(31): Wright T. H.; Bower B. J.; Chalker J. M.; Bernardes G. J. L.;
Wiewiora R.; Ng W.-L.; Raj R.; Faulkner S.; Vallée M. R. J.;
Phanumartwiwath A.; Coleman O. D.; Thézénas M.-L.; Khan M.; Galan
S. R. G.; Lercher L.; Schombs M. W.; Gerstberger S.; Palm-Espling M. E.;
Baldwin A. J.; Kessler B. M.; Claridge T. D. W.; Mohammed S.; Davis B.
G. Posttranslational mutagenesis: A chemical strategy for exploring
protein side-chain diversity. Science 2016, 354, 597 and aag1465.
(32): Meledin R.; Mali S. M.; Singh S. K.; Brik A. Protein
ubiquitination via dehydroalanine: development and insights into the
diastereoselective 1,4-addition step. Org. Biomol. Chem. 2016, 14,
4817-4823.
1
2
3
4
5
6
7
8
deubiquitinase. Angew. Chem. Int. Ed. 2018, 57, 5645-5649.
(36): Cohen D. T.; Zhang C.; Pentelute B. L.; Buchwald S. L. An
umpolung approach for the chemoselective arylation of selenocysteine in
unprotected peptides. J. Am. Chem. Soc. 2015, 137, 9784-9787.
(37): Cohen D. T.; Zhang C.; Fadzen C. M.; Mijalis A. J.; Hie L.;
Johnson K. D.; Shriver Z.; Plante O.; Miller S. J.; Buchwald S. L.;
Pentelute B. L. A chemoselective strategy for late-stage functionalization
of complex small molecules with polypeptides and proteins. Nat. Chem.
2019, 11, 78-85.
(38): Kasper M.-A.; Glanz M.; Oder A.; Schmieder P.; von Kries J. P.;
Hackenberger C. P. R. Vinylphosphonites for staudinger-induced
chemoselective peptide cyclization and functionalization. Chem. Sci.
2019, 10, 6322-6329.
(39): Kasper M.-A.; Stengl A.; Ochtrop P.; Gerlach M.; Stoschek T.;
Schumacher D.; Helma J.; Penkert M.; Krause E.; Leonhardt H.;
Hackenberger C. P. R. Ethynylphosphonamidates for rapid and cysteine-
selective generation of efficacious antibody-drug conjugates. Angew.
Chem. Int. Ed. 2019, 58, 11631-11636.
(40): Bertran-Vicente J.; Penkert M.; Nieto-Garcia O.; Jeckelmann J.-
M.; Schmieder P., Krause E., Hackenberger C. P. R. Chemoselective
synthesis and analysis of naturally occurring phosphorylated cysteine
peptides. Nat. Comm. 2016, 7, Article Number: 12703.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(41): Trishin Y. G.; Bondarenko E. A.; Stepanov I. A.; Chistokletov V.
N. Chemoselectivity of reactions of dialkyl α,β-unsaturated
phosphonites with p-nitrophenylsulfenyl chloride. Zhurnal Obshchei
Khimii 1989, 59, 230-231.
(42): Komander D.; Rape M. The ubiquitin code. Annu. Rev.
Biochem. 2012, 81, 203-229.
(43): Komander D. The emerging complexity of protein
ubiquitination. Biochem. Soc. Trans. 2009, 37, 937-953.
(44): Isasa M.; Katz E. J.; Kim W., Yugo V.; González S.; Kirkpatrick
D. S.; Thomson T. M.; Finley D.; Gygi S. P.; Crosas B.
Monoubiquitination of RPN10 regulates substrate recruitment to the
proteasome. Mol. Cell. 2010, 38, 733-745.
(45): Baker R.; Lewis S. M.; Sasaki A. T.; Wilkerson E. M.; Locasale J.
W.; Cantley L. C.; Kuhlman B.; Dohlman H. G.; Campbell S. L. Site-
specific monoubiquitination activates Ras by impending GTPase
activating protein function. Nat. Struct. Mol. Biol. 2013, 20, 46-52.
(46): Haj-Yahya M.; Fauvet B.; Herman-Bachinsky Y.; Hejjaoui M.;
Bavikar S. N.; Karthikeyan S. V.; Ciechanover A.; Lashuel H. A.; Brik A.
Synthetic polyubiquitinated α-synuclein reveals important insights into
the roles of the ubiquitin chain in regulating its pathophysiology. PNAS
2013, 110, 17726-17731.
(47): Hemantha H. P.; Bavikar S. N.; Herman-Bachinsky Y.; Haj-
Yahya N.; Bondalapati S.; Ciechanover A.; Brik A. Nonenzymatic
polyubiquitination of expressed proteins. J. Am. Chem. Soc. 2014, 136,
2665-2673.
(48): Schneider T.; Schneider D.; Rösner D.; Malhotra S.; Mortensen
F.; Mayer T. U.; Scheffner M.; Marx A. Dissecting ubiquitin signaling
with linkage-defined and protease resistant ubiquitin chains. Angew.
Chem. Int. Ed. 2014, 53, 12925-12929.
(49): Trang V. H.; Rodgers M. L.; Boyle K. J.; Hoskins A. A.; Strieter
E. R. Chemoenzymatic synthesis of bifunctional polyubiquitin substrates
for monitoring ubiquitin chain remodeling. ChemBioChem 2014, 15,
1563-1568.
(50): Rodrigo-Brenni M. C.; Foster S. A.; Morgan D. O. Catalysis of
lysine 48-specific ubiquitin chain assembly by residues in E2 and
ubiquitin. Mol. Cell. 2010, 39, 548-559.
(51): Haldeman M. T.; Xia G.; Kasperek E. M.; Pickart C. M.
Structure and function of ubiquitin conjugating enzyme E2-25K: the tail
is a core-dependent activity element. Biochemistry 1997, 36, 10526-
10537.
(33): Haj-Yahya N.; Hemantha H. P.; Meledin R.; Bondalapati S.;
Seenaiah M.; Brik A. Dehydroalanine-based diubiquitin activity probes.
Org. Lett. 2014, 16, 540-543.
(34): Jbara M.; Laps S.; Morgan M.; Kamnesky G.; Mann G.;
Wolberger C.; Brik A. Palladium prompted on-demand cysteine
chemistry for the synthesis of challenging and uniquely modified
proteins. Nat. Commun. 2018, 9, 3154.
(35): Meledin R.; Mali S. M.; Kleifeld O.; Brik A. Activity-based
probes developed by applying a sequential dehydroalanine formation
8
ACS Paragon Plus Environment