5
316 Organometallics 2009, 28, 5316–5322
DOI: 10.1021/om900495n
Quantitative Assay for the Direct Comparison of Platinum Catalysts in
Benzene H/D Exchange
Amanda J. Hickman, Janette M. Villalobos, and Melanie S. Sanford*
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109
Received June 11, 2009
This paper describes a protocol for the direct comparison of diverse Pt catalysts in the H/D
exchange between C H and TFA-d , CD CO D, and TFE-d using turnover number (TON) as a
6
6
1
3
2
3
standard metric. An initial survey of Pt complexes, including commercial Pt salts (PtCl , K PtCl )
2
2
4
and Pt chloride complexes containing bidentate and tridentate nitrogen donor ligands, has been
conducted. These studies have established that the addition of AgOAc (in TFA-d ) or AgBF4
1
(in CD CO D and TFE-d ) displaces the Cl ligands on the Pt precatalyst, which leads to dramatically
increased turnover numbers. In general, PtCl and K PtCl provided the fewest turnovers, and
3 2 3
2
2
4
species containing bidentate ligands afforded higher turnover numbers than those with tridentate
ligands. A diimine Pt complex was found to be a top performing catalyst for H/D exchange with all
deuterium sources examined. Interestingly, the relative reactivity of many of the catalysts varied
dramatically upon changing the deuterium source, highlighting the need to thoroughly assay
potential catalysts under a variety of conditions.
Introduction
Scheme 1. Proposed Mechanism of Platinum-Catalyzed R-H
2,5
Oxidation
The development of Pt-based catalysts for the oxidation of
alkanes/arenes (R-H) to alcohols has been an important
area of research for nearly 40 years. Pioneering studies by
Shilov in the early 1970s demonstrated that a combination of
*
Corresponding author. E-mail: mssanfor@umich.edu.
1) Goldshleger, N. F.; Eskova, V. V.; Shilov, A. E.; Shteinman, A. A.
Zh. Fiz. Khim. 1972, 46, 1353.
2) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed.
998, 37, 2181.
3) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.;
Fujii, H. Science 1998, 280, 560.
4) Conley, B. L.; Tenn, W. J.; Young, K. J. H.; Ganesh, S. K.; Meier,
(
(
1
(
II
IV
simple Pt and Pt salts promotes the oxidation of methane
to methanol, and subsequent work in this field has aimed to
improve this system through variation of the ancillary ligands
(
S. K.; Ziatdinov, V. R.; Mironov, O.; Oxgaard, J.; Gonzales, J.;
Goddard, W. A.; Periana, R. A. J. Mol. Catal., A 2006, 251, 8.
II
1,2
(
5) Kua, J.; Xu, X.; Periana, R. A.; Goddard, W. A. Organometallics
002, 21, 511.
6) (a) Holtcamp, M. W.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem.
Soc. 1997, 119, 848. (b) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc.
997, 119, 10235. (c) Holtcamp, M. W.; Henling, L. M.; Day, M. W.;
Labinger, J. A.; Bercaw, J. E. Inorg. Chim. Acta 1998, 270, 467.
d) Johansson, L.; Ryan, O. B.; Tilset, M. J. Am. Chem. Soc. 1999, 121,
974. (e) Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw, J. E. J. Am.
at Pt (Scheme 1). In one of the most important advances,
2
II
Periana demonstrated that (bpym)Pt Cl (bpym = κ-2,2 -
0
2
(
bipyrimidine) catalyzes the conversion of methane to methyl-
bisulfate in fuming sulfuric acid with a 72% first-pass yield
3,4
and 81% selectivity.
1
(
1
II
Carbon-hydrogen bond activation at Pt centers of gen-
Chem. Soc. 2000, 122, 10846. (f) Heiberg, H.; Johansson, L.; Gropen, O.;
Ryan, O. B.; Swang, O.; Tilset, M. J. Am. Chem. Soc. 2000, 122, 10831.
eral structure A (Scheme 1, step 1) has been proposed as a key
step in Pt-catalyzed alkane/arene oxidation chemistry and has
therefore been an important focus of recent studies. The most
common literature assay for C-H activation involves the
(
1
(
g) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002, 124,
378. (h) Thomas, J. C.; Peters, J. C. J. Am. Chem. Soc. 2001, 123, 5100.
i) Johansson, L.; Ryan, O. B.; Romming, C.; Tilset, M. J. Am. Chem. Soc.
e
II
2
001, 123, 6579. (j) Iverson, C. N.; Carter, C. A. G.; Baker, R. T.; Scollard, J.
D.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2003, 125, 12674.
k) Gerdes, G.; Chen, P. Organometallics 2003, 22, 2217. (l) Driver, T. G.;
Day, M. W.; Labinger, J. A.; Bercaw, J. E. Organometallics 2005, 24, 3644.
stoichiometric reaction of an alkane or arene with a Pt alkyl
complex (exemplified by B in eq 1).
containing diverse bi- and tridentate nitrogen donor ligands
participate in this model reaction, and studies of these systems
6-8
II
Many Pt complexes
(
(
(
m) Thomas, C. M.; Peters, J. C. Organometallics 2005, 24, 5858.
n) Karshtedt, D.; McBee, J. L.; Bell, A. T.; Tilley, T. D. Organometallics
2006, 25, 1801. (o) Owen, J. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem.
Soc. 2006, 128, 2005. (p) Driver, T. G.; Williams, T. J.; Labinger, J. A.;
Bercaw, J. E. Organometallics 2007, 26, 294. (q) Williams, T. J.; Caffyn, A.
J. M.; Hazari, N.; Oblad, P. F.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem.
Soc. 2008, 130, 2418.
(7) Zhang, F.; Kirby, C. W.; Hairsine, D. W.; Jennings, M. C.;
Puddephatt, R. J. J. Am. Chem. Soc. 2005, 127, 14196.
(8) Ong, C. M.; Burchell, T. J.; Puddephatt, R. J. Organometallics
2004, 23, 1493.
pubs.acs.org/Organometallics
Published on Web 08/24/2009
r 2009 American Chemical Society