Crystal Growth & Design
Article
Notes
synthesis: prediction and synthesis of self-assembled infinite rods. J.
Chem. Soc., Chem. Commun. 1994, 2135−6.
The authors declare no competing financial interest.
(
18) Felix, O.; Hosseini, M. W.; De Cian, A.; Fischer, J. The
́
Simultaneous Use of H-Bonding and Coulomb Interactions for the
Self-Assembly of Fumaric Acid and Cyclic Bisamidine into One- and
Two-Dimensional Molecular Networks. Angew. Chem., Int. Ed. Engl.
ACKNOWLEDGMENTS
■
We thank the Australian Research Council for funding this
work (DE170100200 to N.G.W.). Part of this research was
undertaken on the MX1 beamline at the Australian
Synchrotron, part of ANSTO. M.J.M. thanks NSERC
1
997, 36, 102−104.
6
2
(19) Lie, S.; Maris, T.; Malveau, C.; Beaudoin, D.; Helzy, F.; Wuest,
J. D. Molecular Networks Created by Charge-Assisted Hydrogen
Bonding in Carboxylate Salts of a Bis(amidine). Cryst. Growth Des.
(
Discovery Grant) for support.
2
(
013, 13, 1872−1877.
20) Lie, S.; Maris, T.; Wuest, J. D. Molecular Networks Created by
REFERENCES
Charge-Assisted Hydrogen Bonding in Phosphonate, Phosphate, and
■
Sulfonate Salts of Bis(amidines). Cryst. Growth Des. 2014, 14, 3658−
(
1) Luo, J.; Wang, J.-W.; Zhang, J.-H.; Lai, S.; Zhong, D.-C.
Hydrogen-bonded organic frameworks: design, structures and
potential applications. CrystEngComm 2018, 20, 5884−5898.
2) Lin, R.-B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B.
Multifunctional porous hydrogen-bonded organic framework materi-
als. Chem. Soc. Rev. 2019, 48, 1362−1389.
3) Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Designing
4) Duchamp, D. J.; Marsh, R. E. The crystal structure of trimesic
acid (benzene-1,3,5-tricarboxylic acid). Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem. 1969, B25, 5−19.
5) Ermer, O. Five-fold diamond structure of adamantane-1,3,5,7-
tetracarboxylic acid. J. Am. Chem. Soc. 1988, 110, 3747−3754.
6) Simard, M.; Su, D.; Wuest, J. D. Use of hydrogen bonds to
3
(
666.
21) Xing, G.; Bassanetti, I.; Bracco, S.; Negroni, M.; Bezuidenhout,
C.; Ben, T.; Sozzani, P.; Comotti, A. A double helix of opposite
charges to form channels with unique CO2 selectivity and dynamics.
Chem. Sci. 2019, 10, 730−736.
(
(22) Mottillo, C.; Friscic, T. Supramolecular imidazolium frame-
(
works: direct analogues of metal azolate frameworks with charge-
inverted node-and-linker structure. Chem. Commun. 2015, 51, 8924−
8
927.
(
(
23) White, N. G. Recent advances in self-assembled amidinium and
guanidinium frameworks. Dalton Trans 2019, 48, 7062−7069.
24) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
(
(
Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new
materials. Nature 2003, 423, 705−714.
(
(25) Horner, M. J.; Holman, K. T.; Ward, M. D. Architectural
control molecular aggregation. Self-assembly of three-dimensional
Diversity and Elastic Networks in Hydrogen-Bonded Host Frame-
works: From Molecular Jaws to Cylinders. J. Am. Chem. Soc. 2007,
networks with large chambers. J. Am. Chem. Soc. 1991, 113, 4696−
4
(
698.
1
(
29, 14640−14660.
26) Liu, Y.; Hu, C.; Comotti, A.; Ward, M. D. Supramolecular
Archimedean Cages Assembled with 72 Hydrogen Bonds. Science
011, 333, 436−440.
27) Liu, Y.; Xiao, W.; Yi, J. J.; Hu, C.; Park, S.-J.; Ward, M. D.
7) Wang, X.; Simard, M.; Wuest, J. D. Molecular Tectonics. Three-
Dimensional Organic Networks with Zeolitic Properties. J. Am. Chem.
Soc. 1994, 116, 12119−12120.
8) Kobayashi, K.; Shirasaka, T.; Sato, A.; Horn, E.; Furukawa, N.
Self-Assembly of a Radially Functionalized Hexagonal Molecule:
Hexakis(4-hydroxyphenyl)benzene. Angew. Chem., Int. Ed. 1999, 38,
2
(
(
Regulating the Architectures of Hydrogen-Bonded Frameworks
through Topological Enforcement. J. Am. Chem. Soc. 2015, 137,
3
(
483−3486.
3
(
386−3392.
9) Brunet, P.; Simard, M.; Wuest, J. D. Molecular Tectonics. Porous
28) Handke, M.; Adachi, T.; Hu, C.; Ward, M. D. Encapsulation of
Hydrogen-Bonded Networks with Unprecedented Structural Integ-
rity. J. Am. Chem. Soc. 1997, 119, 2737−2738.
10) Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A. J.;
Isolated Luminophores within Supramolecular Cages. Angew. Chem.,
Int. Ed. 2017, 56, 14003−14006.
(
(29) Morshedi, M.; Thomas, M.; Tarzia, A.; Doonan, C. J.; White,
Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N.
R.; Schroder, M. Exceptional Thermal Stability in a Supramolecular
Organic Framework: Porosity and Gas Storage. J. Am. Chem. Soc.
010, 132, 14457−14469.
11) He, Y.; Xiang, S.; Chen, B. A Microporous Hydrogen-Bonded
Organic Framework for Highly Selective C H /C H Separation at
N. G. Supramolecular anion recognition in water: synthesis of
hydrogen-bonded supramolecular frameworks. Chem. Sci. 2017, 8,
̈
3
(
019−3025.
2
(
30) Boer, S. A.; Morshedi, M.; Tarzia, A.; Doonan, C. J.; White, N.
G., Molecular tectonics: a node-and-linker building block approach to
2
2
2
4
Ambient Temperature. J. Am. Chem. Soc. 2011, 133, 14570−14573.
12) Mastalerz, M.; Oppel, I. M. Rational Construction of an
Extrinsic Porous Molecular Crystal with an Extraordinary High
(
(31) Morshedi, M.; Ward, J. S.; Kruger, P. E.; White, N. G.
Specific Surface Area. Angew. Chem., Int. Ed. 2012, 51, 5252−5255.
Supramolecular frameworks based on 5,10,15,20-tetra(4-
carboxyphenyl)porphyrins. Dalton Trans 2018, 47, 783−790.
(32) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Patterns in
Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1555−1573.
(
13) Pulido, A.; Chen, L.; Kaczorowski, T.; Holden, D.; Little, M. A.;
Chong, S. Y.; Slater, B. J.; McMahon, D. P.; Bonillo, B.; Stackhouse,
C. J.; Stephenson, A.; Kane, C. M.; Clowes, R.; Hasell, T.; Cooper, A.
I.; Day, G. M. Functional materials discovery using energy-structure-
function maps. Nature 2017, 543, 657−664.
(33) Kamali, N.; Aljohani, M.; McArdle, P.; Erxleben, A. Hydrogen
Bonding Networks and Solid-State Conversions in Benzamidinium
Salts. Cryst. Growth Des. 2015, 15, 3905−3916.
(
14) Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura,
T.; Douhal, A. Acid Responsive Hydrogen-Bonded Organic Frame-
works. J. Am. Chem. Soc. 2019, 141, 2111−2121.
(34) Pop, L.; Hadade, N. D.; van der Lee, A.; Barboiu, M.; Grosu, I.;
Legrand, Y.-M. Occurence of Charge-Assisted Hydrogen Bonding in
Bis-amidine Complexes Generating Macrocycles. Cryst. Growth Des.
2016, 16, 3271−3278.
(35) Thomas, M.; Anglim Lagones, T.; Judd, M.; Morshedi, M.;
O’Mara, M. L.; White, N. G. Hydrogen bond-driven self–assembly
between amidiniums and carboxylates: a combined MD, NMR and
SCXRD study. Chem. - Asian J. 2017, 12, 1587−1597.
(36) Chong, J. H.; MacLachlan, M. J. Iptycenes in supramolecular
and materials chemistry. Chem. Soc. Rev. 2009, 38, 3301−3315.
(
15) Russell, V. A.; Etter, M. C.; Ward, M. D. Layered Materials by
Molecular Design: Structural Enforcement by Hydrogen Bonding in
Guanidinium Alkane- and Arenesulfonates. J. Am. Chem. Soc. 1994,
1
(
16, 1941−1952.
16) Russell, V. A.; Evans, C. C.; Li, W.; Ward, M. D. Nanoporous
Molecular Sandwiches: Pillared Two-Dimensional Hydrogen-Bonded
Networks with Adjustable Porosity. Science 1997, 276, 575−579.
(
17) Hosseini, M. W.; Ruppert, R.; Schaeffer, P.; De Cian, A.;
Kyritsakas, N.; Fischer, J. A molecular approach to solid-state
F
Cryst. Growth Des. XXXX, XXX, XXX−XXX