communications
www.advancedsciencenews.com
[5] S. Guo, S. Sun, J. Am. Chem. Soc. 2012, 134, 2492.
of nanowires was well maintained after stability test, while
Pt/C catalyst showed obvious aggregations, confirming the
better stability of Fe–N-CNTAs-5-900 during electrochemical
process. Taken together, the porous structures characterized
by unique hollow nanowire network provided the large sur-
face area and abundant exposed active sites, promoting the
mass transport and electron transfer. Uniform single-atom
[
6] Z. Chen, M. Waje, W. Li, Y. Yan, Angew. Chem., Int. Ed. 2007, 46,
060.
7] W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, J. Am. Chem. Soc. 2015, 137,
436.
4
[
1
[
[
8] G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878.
9] L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Chem. Rev. 2015, 115,
4823.
distribution of Fe ions within carbon matrix guarantees the [10] H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen,
Nat. Commun. 2014, 5, 4973.
11] G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang,
H.-L. Wang, L. Dai, Nano Energy 2016, 29, 83.
homogeneity of active components, enhancing the cata-
[
[
lytic efficiency of the catalyst. Both favorable factors render
Fe–N-CNTAs a promising ORR electrocatalyst for fuel cells.
Furthermore, it is expected that this unique single-atom
12] G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332,
4
43.
Fe–N–C catalysts may provide a novel model to extensively [13] M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science 2009, 324,
study their ORR mechanism because of the unity of the elec-
trocatalytic active sites.
71.
[
[
[
14] A. Serov, K. Artyushkova, P. Atanassov, Adv. Energy Mater. 2014,
4
, 1301735.
15] S. Fu, C. Zhu, H. Li, D. Du, Y. Lin, J. Mater. Chem. A 2015, 3,
2718.
In conclusion, we have demonstrated an efficient and
versatile strategy for the creation of atomically dispersed
M–N-CNTAs nanostructures. For the first time, the uniform
distribution of metal ions within carbon matrix and the evolu-
tion of carbon nanotube hydrogels can be realized simultane-
1
16] Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu,
B. Barbiellini, A. Bansil, E. F. Holby, P. Zelenay, S. Mukerjee,
ACS Nano 2015, 9, 12496.
ously through one-step hydrothermal approach. Subsequent [17] A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva,
L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.
annealing treatment gives rise to the M–N-CNTAs char-
[
18] H. Fei, J. Dong, M. J. Arellano-Jimenez, G. Ye, N. Dong Kim,
E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman,
P. M. Ajayan, D. Chen, J. M. Tour, Nat. Commun. 2015, 6, 8668.
19] B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li,
T. Zhang, Nat. Chem. 2011, 3, 634.
acterized by advanced features including porous nanotube
networks and homogeneity of active sites with single atom
catalyst feature. The newly designed Fe–N-CNTAs can be
directly used as active and robust NPMCs for ORR without
[
complicated post-treatment. Significantly, this novel single- [20] P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier,
atom electrocatalyst shows excellent ORR activity and much
better stability than the Pt/C catalysts in alkaline medium,
making it one of the most promising NPMCs.
P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016,
3
52, 797.
[
[
21] C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev. 2016, 45, 517.
22] J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi,
Angew. Chem., Int. Ed. 2015, 54, 588.
[
[
[
[
[
23] X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu,
T. Wang, J. Zheng, G. Wu, X. Li, Nano Energy 2016, 25, 110.
24] S. Ma, G. A. Goenaga, A. V. Call, D.-J. Liu, Chem. Eur. J. 2011, 17,
2
063.
Supporting Information
25] H.-W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Muellen, J. Am. Chem.
Soc. 2013, 135, 16002.
26] Y. Wang, A. Kong, X. Chen, Q. Lin, P. Feng, ACS Catal. 2015, 5,
Supporting Information is available from the Wiley Online Library
or from the author.
3
887.
27] M. Zhou, C. Yang, K.-Y. Chan, Adv. Energy Mater. 2014, 4,
400840.
[28] Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu, P. Feng, Adv. Mater. 2015,
7, 3431.
1
Acknowledgements
2
[
29] B. You, N. Jiang, M. Sheng, W. S. Drisdell, J. Yano, Y. Sun,
ACS Catal. 2015, 5, 7068.
C.Z. and S.F. contributed equally to this work. This work was sup-
ported by a start-up fund of Washington State University, USA. The
XPS analysis was performed using EMSL, a national scientific user
[30] H. W. Liang, Z. Y. Wu, L. F. Chen, C. Li, S. H. Yu, Nano Energy 2015,
1
1, 366.
facility sponsored by the Department of Energy’s Office of Biolog- [31] J. T. Zhang, Z. H. Zhao, Z. H. Xia, L. M. Dai, Nat. Nanotechnol.
2
015, 10, 444.
ical and Environmental Research and located at Pacific Northwest
National Laboratory (PNNL). The authors acknowledge Franceschi
Microscopy and Image Center at Washington State University for
TEM measurements. PNNL is a multiprogram national laboratory
operated for DOE by Battelle under Contract DE-AC05-76RL01830.
[
[
32] L. Chen, R. Du, J. H. Zhu, Y. Y. Mao, C. Xue, N. Zhang, Y. L. Hou,
J. Zhang, T. Yi, Small 2015, 11, 1423.
33] H.-W. Liang, Q.-F. Guan, L.-F. Chen, Z. Zhu, W.-J. Zhang, S.-H. Yu,
Angew. Chem., Int. Ed. 2012, 51, 5101.
[34] G. Zhang, X. W. Lou, Angew. Chem., Int. Ed. 2014, 126, 9187.
[
35] J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus,
H. Zhao, Z. Tang, D. Wang, Angew. Chem., Int. Ed. 2013, 52, 6417.
36] M.-M. Titirici, M. Antonietti, A. Thomas, Chem. Mater. 2006, 18,
3808.
[
[
[
1] M. K. Debe, Nature 2012, 486, 43.
2] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, [37] A. Kong, X. Zhu, Z. Han, Y. Yu, Y. Zhang, B. Dong, Y. Shan,
7
60.
ACS Catal. 2014, 4, 1793.
[
[
3] C. Zhu, D. Du, A. Eychmüller, Y. Lin, Chem. Rev. 2015, 115, 8896.
4] S. Guo, S. Zhang, S. Sun, Angew. Chem., Int. Ed. 2013, 52, 8526.
[38] L.-T. Song, Z.-Y. Wu, H.-W. Liang, F. Zhou, Z.-Y. Yu, L. Xu, Z. Pan,
S.-H. Yu, Nano Energy 2016, 19, 117.
1603407 (6 of 7)
www.small-journal.com
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
small 2017, 1603407