of DAP dendrons observed in the molecular modeling
simulations. The diameter increases (from 4.6 nm to 7.9 nm)
as the generation of dendron increased for the flavin polymer 3
whereas the control polymer 4 did not show any appreciable
change in diameter (ESIw).
In conclusion, we have demonstrated that site isolation of redox
active units via formation of specific supramolecular complexes
can be used as a tool to modulate the redox behavior. In
particular, we have shown that DAP containing dendrons showed
enhanced binding towards site isolated polymer-bound flavin
systems relative to their monomeric counterparts. At higher
equivalents of DAP dendrons, a significant insulation of redox
activity of polymeric flavin was observed due to the encapsulation
of flavin. This supramolecular based modulation of redox
behavior of flavin bound polymer motif could be potentially used
in the creation of artificial enzymes, light harvesting systems, and
molecular wires. Our future work will involve investigating these
redox active polymers and their possible applications in redox
responsive sensing systems, and photovoltaic devices.
Fig. 2 CV traces of polymeric flavin 3 exhibiting different flavin
redox behaviors in the presence of G1, G2 and G3 DAP dendrons.
to peak distances were 200, 225, 440 mV for G1, G2 and G3
respectively. The broadening of the peak to peak distance and
the dramatic decrease in the current indicate a slow rate of
electron transfer from the flavin to electrode, indicating the
effective isolation and encapsulation of appended flavins from
outside interfering species (Fig. 2).
A. S. would like to thank the financial support from Turkish
Academy of Sciences under the TUBA-GEBIP fellowship
program. V. R. acknowledges Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences under Award Number
DE-SC0001087.
Surprisingly, the shift in the polymeric flavin redox potential
was not significantly different than the monomeric flavin
systems. A positive shift of 60–70 mV was observed for the
reduction potential of polymer 3 for all three DAP dendrimer
generations. The shifts in reduction potential were only
slightly larger than the shifts recorded for the monomeric
flavin 1. Thus, the cooperative non-covalent interactions
appeared to modulate the flavin redox potential while the size
of the complex determined the encapsulation of the flavin unit.
Association constants in the radical anionic states (Ka(red))
were extrapolated by using the shifts in reduction potentials
Notes and references
1 (a) D. Podkoscielny, S. Gadde and A. E. Kaifer, J. Am. Chem.
Soc., 2009, 131, 12876; (b) S. Isoda, K. Akiyama, S. Nishikawa,
S. Ueyama, H. Miyasaka and T. Okada, Thin Solid Films, 2004,
466, 285; (c) T. L. Chasse, R. Sachdeva, Q. Li, Z. Li, R. J. Petrie
and C. B. Gorman, J. Am. Chem. Soc., 2003, 125, 820.
2 P. Weyermann, J.-P. Gisselbrecht, C. Boudon, F. Diederich and
M. Gross, Angew. Chem., Int. Ed., 1999, 111, 3400.
1
(DE ) of 1 and polymer 3 and the association constants
(Ka(ox)) through the following relationship.
2
3 P. Bhyrappa, G. Vaijayanthimala and K. S. Suslick, J. Am. Chem.
Soc., 1999, 121, 262.
{(nF/RT)(E12(bound)ÀE12(unbound))}
Ka(red) = Ka(ox)e
4 A. Adronov, S. L. Gilat, J. M. J. FreAchet, K. Ohta, F. V.
R. Neuwahl and G. R. Fleming, J. Am. Chem. Soc., 2000, 122, 1175.
5 I. Jestin, E. Levillain and J. Roncali, Chem. Commun., 1999, 2655.
6 K. Sooklal, L. H. Hanus, H. J. Ploehn and C. J. Murphy, Adv.
Mater., 1998, 10, 1083.
´
7 (a) S. Hecht and J. M. J. Frechet, Angew. Chem., Int. Ed., 2001, 40,
74; (b) C. Sanchez, H. Arribart and M. M. G. Guille, Nat. Mater.,
2005, 4, 277.
8 (a) W. Ong, J. Grindstaff, D. Sobransingh, R. Toba, J. M. Quintela,
C. Peinador and A. E. Kaifer, J. Am. Chem. Soc., 2005, 127, 3353;
(b) D. Xu, W. Wang, D. Gesua and A. E. Kaifer, Org. Lett., 2008, 10,
4517; (c) D. Pokoscielny, R. J. Holley, Jr., J. Rebek and A. E. Kaifer,
Org. Lett., 2008, 10, 2865; (d) C. S. Cameron and C. B. Gorman, Adv.
Funct. Mater., 2002, 12, 17.
9 (a) C. B. Gorman, Adv. Mater., 1998, 10, 295; (b) C. B. Gorman,
B. L. Parkhurst, W. L. Su and K. Y. Chen, J. Am. Chem. Soc.,
1997, 119, 1141.
The association constant for the G2 dendron with the polymer
bound flavin in reduced state showed a 15.7-fold increase in
binding. However, the monomeric flavin showed a 8.5-fold
increase in the binding in the reduced state (Table 1). Molecular
modeling studies clearly predicted the formation of encapsulated
flavin inside the self-assembled structure through hydrogen
bonding and aromatic interactions between the flavin polymer
3 and DAP dendron G3 (Fig. 3). Analogous molecular models of
flavin polymer 3 with DAP dendrons G1 and G2 have also
shown encapsulation of flavin units, while monomeric flavin does
not demonstrate any encapsulation of flavin units (ESIw).
Dynamic light scattering experiments corroborated the
expected diameter change for the flavin polymer upon addition
10 J. B. Carroll, B. J. Jordan, H. Xu, B. Erdogan, L. Lee, L. Cheng,
C. Tiernan, G. Cooke and V. M. Rotello, Org. Lett., 2005, 7, 2551.
11 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
12 (a) E. C. Breinlinger and V. M. Rotello, J. Am. Chem. Soc., 1997,
119, 1165; (b) M. D. Greaves and V. M. Rotello, J. Am. Chem.
Soc., 1997, 119, 10569.
13 (a) B. J. Jordan, G. Cooke, J. F. Garety, M. A. Pollier,
N. Kryvokhyzha, A. Bayir, G. Rabani and V. M. Rotello, Chem.
Commun., 2007, 1248; (b) S. T. Caldwell, G. Cooke, S. G. Hewage,
S. Mabruk, G. Rabani, V. M. Rotello, B. O. Smith, C. Subramani
and P. Woisel, Chem. Commun., 2008, 4126.
14 (a) T. H. Galow, F. Ilhan, G. Cooke and V. M. Rotello, J. Am.
Chem. Soc., 2000, 122, 3595; (b) A. Niemz, J. Imbriglio and
V. M. Rotello, J. Am. Chem. Soc., 1997, 119, 887.
Fig. 3 Molecular dynamics simulation (Amber force field) of (a)
polymeric flavin 3 and (b) polymeric flavin 3 with G3 DAP dendrons.
(Flavin moieties are highlighted in green.)
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2067–2069 | 2069