A R T I C L E S
Bailey et al.
6
lanthanides, actinides, or early transition metals. Radical bond
catalysts, such processes are often dominated by radical
pathways encompassing H-atom removal, thus rendering the
C-H activation step dependent on the C-H bond strength
10
11
homolysis, electrophilic activation, and 1,2-additions across
a highly polarized metal-ligand multiple bond2
,4,12-29
encom-
3
pass the remaining forms of C-H bond activation reactions
itself. As a result, exploring C-H activation reactions with
known to date.
systems that avoid radical pathways would constitute an
attractive paradigm, since selectivity would not be entirely
dominated by the strength of the C-H bond. In a closed-shell
formalism, transition metal alkylidenes and imides are an
important class of ligands, given their implication not only in
While a common goal of C-H activation chemistry is to
functionalize the arene or alkane substrate to a synthetically
useful product, finding a species that can initiate the C-H
activation under controlled conditions can be regarded as one
of the most difficult steps, especially if such a reaction can be
performed selectively. Even though most existing transforma-
tions of alkane C-H bonds can be done by applying metal oxide
2
,30
catalysis
but also in intermolecular alkane/arene C-H
2
,21
activation, in some cases regioselectively. The latter type of
transformation can be perhaps traced back to Bercaw and
9
,18,31
Rothwell,
who found that transient early transition metal
alkylidenes could not only participate in metathesis-type
chemistry but also engage in the intramolecular C-H activation
(
6) (a) Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1991,
1
13, 1833-5. (b) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger,
B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J.
Am. Chem. Soc. 1987, 109, 203-19. (c) Watson, P. L.; Parshall, G. W.
Acc. Chem. Res. 1985, 18, 51-6. (d) Fendrick, C. M.; Marks, T. J. J. Am.
Chem. Soc. 1986, 108, 425-37.
of the ancillary ligand via 1,2-addition reactions across the Md
CHR linkage (M ) Ti, R ) H; M ) Ta, R ) SiMe3).1
8,19
To
our knowledge, these results represents the first reported cases
(
7) Burger, P.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 10462-3.
8) (a) Watson, P. L. J. Am. Chem. Soc. 1983, 105, 6491-3. (b) Vidal, V.;
Theolier, A.; Thivolle-Cazat, J.; Basset, J.-M.; Corker, J. J. Am. Chem.
Soc. 1996, 118, 4595-602. (c) Niccolai, G. P.; Basset, J.-M. Appl. Catal.
A 1996, 146, 145-56.
(
of an alkylidene endorsing a C-H activation step. Contrary to
15,19,20,32-34
intramolecular 1,2-CH activation reactions,
intermo-
lecular 1,2-addition of a C-H bond across a metal-ligand
multiple bond is a far more scant but desired phenomenon,
and such a transformation has been narrowly confined to
(
9) Rothwell, I. P. Acc. Chem. Res. 1988, 21, 153-9.
(
10) (a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112, 1259-61.
(
5
b) Wayland, B. B.; Ba, S.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113,
305-11.
11) Stahl, S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37,
2,13,15-17,22,24,27
12,21,23,25,26,28
MdNR
and MdCHR
functionalities.
(
2
181-92.
The first examples of such a process were reported by
(
(
12) van der Heijden, H.; Hessen, B. Chem. Commun. 1995, 145-6.
13) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988,
1
3
22
Wolczanski and Bergman, who demonstrated that un-
saturated group 4 imides can trigger the activation of a
variety of hydrocarbons, including methane in the case of
Wolczanski’s system. C-H activation across polarized
metal-ligand multiple bonds was further expanded to the
1
10, 8731-3.
(
14) (a) Howard, W. A.; Waters, M.; Parkin, G. J. Am. Chem. Soc. 1993, 115,
4
5
3
917-18. (b) Lee, S. Y.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117,
877-8. (c) Parkin, G.; Bercaw, J. E. J. Am. Chem. Soc. 1989, 111, 391-
. (d) Cook, G. K.; Mayer, J. M. J. Am. Chem. Soc. 1994, 116, 1855-68.
(
e) Legzdins, P.; Veltheer, J. E.; Young, M. A.; Batchelor, R. J.; Einstein,
F. W. B. Organometallics 1995, 14, 407-17.
25
23
12
alkylidene series by Girolami, Gibson, Hessen, and
Legzdins.
(
15) (a) Cummins, C. C.; Schaller, C. P.; Van Duyne, G. D.; Wolczanski, P.
T.; Chan, A. W. E.; Hoffmann, R. J. Am. Chem. Soc. 1991, 113, 2985-
2
1,26,28
In this respect, the latter type of systems are
9
4. (b) Schaller, C. P.; Wolczanski, P. T. Inorg. Chem. 1993, 32, 131-44.
unique in the sense that they provide an opportunity to
mechanistically study new and globally important reactions
(
c) de With, J.; Horton, A. D. Angew. Chem., Int. Ed. 1993, 32, 903-5.
(d) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Organometallics 1993,
1
2
1
2, 3705-23. (e) Royo, P.; Sanchez-Nieves, J. J. Organomet. Chem.
000, 597, 61-8. (f) Lee, S. Y.; Bergman, R. G. J. Am. Chem. Soc. 1995,
17, 5877-8. (g) Schaller, C. P.; Cummins, C. C.; Wolczanski, P. T. J.
35
such as alkene and alkane metathesis. From another
applied perspective, C-H activation reactions involving
metal-ligand multiply bonded functionalities such as the
terminal oxo have also been studied employing bioinorganic
Am. Chem. Soc. 1996, 118, 591-611. (h) Polse, J. L.; Andersen, R. A.;
Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 13405-14. (i) Schafer, D.
F., II; Wolczanski, P. T. J. Am. Chem. Soc. 1998, 120, 4881-2. (j) Hoyt,
H. M.; Forrest, M. E.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126,
3
6
4,37
mimics, and have been implicated in monooxygenases.
1
018-9.
(
(
16) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1994, 116, 2179-80.
17) (a) Schaller, C. P.; Bonanno, J. B.; Wolczanski, P. T. J. Am. Chem. Soc.
(30) Schrock, R. R. Chem. ReV. 2002, 102, 145-79.
1
994, 116, 4133-4. (b) Cundari, T. R.; Klinckman, T. R.; Wolczanski, P.
(31) Chamberlain, L.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc. 1982,
104, 7338-40.
T. J. Am. Chem. Soc. 2002, 124, 1481-7.
(
(
(
18) McDade, C.; Green, J. C.; Bercaw, J. E. Organometallics 1982, 1, 1629-
(32) (a) van Doorn, J. A.; van der Heijden, H.; Orpen, A. G. Organometallics
1994, 13, 4271-7. (b) van Doorn, J. A.; van der Heijden, H.; Orpen, A.
G. Organometallics 1995, 14, 1278-83.
3
4.
19) Chamberlain, L. R.; Rothwell, I. P.; Huffman, J. C. J. Am. Chem. Soc.
1
986, 108, 1502-9.
(33) (a) Duncalf, D. J.; Harrison, R. J.; McCamley, A.; Royan, B. W. Chem.
Commun. 1995, 2421-2. (b) Minhas, R. K.; Scoles, L.; Wong, S.;
Gambarotta, S. Organometallics 1996, 15, 1113-21. (c) Deckers, P. J.
W.; Hessen, B. Organometallics 2002, 21, 5564-75. (d) Kickham, J. E.;
Guerin, F.; Stephan, D. W. J. Am. Chem. Soc. 2002, 124, 11486-94. (e)
Hanna, T. E.; Keresztes, I.; Lobkovsky, E.; Bernskoetter, W. H.; Chirik,
P. J. Organometallics 2004, 23, 3448-58.
20) Couturier, J. L.; Paillet, C.; Leconte, M.; Basset, J. M.; Weiss, K. Angew.
Chem. 1992, 31, 628-31.
21) Pamplin, C. B.; Legzdins, P. Acc. Chem. Res. 2003, 36, 223-33.
22) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988,
(
(
1
10, 8729-31.
(
(
(
(
23) Coles, M. P.; Gibson, V. C.; Clegg, W.; Elsegood, M. R. J.; Porrelli, P. A.
Chem. Commun. 1996, 1963-4.
(34) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Organometallics
2005, 24, 3321-34.
24) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696-
7
19.
(35) (a) Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.;
Brookhart, M. Science 2006, 312, 257-61. (b) Le Roux, E.; Taoufik,
M.; Coperet, C.; de Mallmann, A.; Thivolle-Cazat, J.; Basset,
J.-M.; Maunders, B. M.; Sunley, G. J. Angew. Chem., Int. Ed. 2005,
44, 6755-8. (c) Soulivong, D.; Coperet, C.; Thivolle-Cazat, J.; Basset,
J.-M.; Maunders, B. M.; Pardy, R. B. A.; Sunley, G. J. Angew. Chem.,
Int. Ed. 2004, 43, 5366-9. (d) Coperet, C.; Maury, O.; Thivolle-
Cazat, J.; Basset, J.-M. Angew. Chem., Int. Ed. 2001, 40, 2331-4. (e)
Basset, J. M.; Coperet, C.; Lefort, L.; Maunders, B. M.; Maury, O.;
Le Roux, E.; Saggio, G.; Soignier, S.; Soulivong, D.; Sunley, G. J.;
Taoufik, M.; Thivolle-Cazat, J. J. Am. Chem. Soc. 2005, 127, 8604-5. (f)
Basset, J.-M.; Coperet, C.; Soulivong, D.; Taoufik, M.; Thivolle-Cazat, J.
Angew. Chem., Int. Ed. 2006, 45, 6082-5. (g) Blanc, F.; Coperet, C.;
Thivolle-Cazat, J.; Basset, J.-M. Angew. Chem., Int. Ed. 2006, 45, 6201-
3. (h) Blanc, F.; Coperet, C.; Thivolle-Cazat, J.; Basset, J.-M.; Lesage, A.;
Emsley, L.; Sinha, A.; Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45,
1216-20.
25) Cheon, J.; Rogers, D. M.; Girolami, G. S. J. Am. Chem. Soc. 1997, 119,
6
804-13.
26) (a) Tran, E.; Legzdins, P. J. Am. Chem. Soc. 1997, 119, 5071-2. (b) Adams,
C. S.; Legzdins, P.; McNeil, W. S. Organometallics 2001, 20, 4939-55.
(
c) Adams, C. S.; Legzdins, P.; Tran, E. Organometallics 2002, 21, 1474-
8
6. (d) Wada, K.; Pamplin, C. B.; Legzdins, P. J. Am. Chem. Soc. 2002,
24, 9680-1. (e) Wada, K.; Pamplin, C. B.; Legzdins, P.; Patrick, B. O.;
1
Tsyba, I.; Bau, R. J. Am. Chem. Soc. 2003, 125, 7035-48. (f) Tsang, J. Y.
K.; Buschhaus, M. S. A.; Legzdins, P.; Patrick, B. O. Organometallics
2
006, 25, 4215-25.
(
(
(
27) Slaughter, L. M.; Wolczanski, P. T.; Klinckman, T. R.; Cundari, T. R. J.
Am. Chem. Soc. 2000, 122, 7953-75.
28) Adams, C. S.; Legzdins, P.; Tran, E. J. Am. Chem. Soc. 2001, 123, 612-
2
4.
29) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.-H.; Mindiola,
D. J. J. Am. Chem. Soc. 2005, 127, 16016-7.
8782 J. AM. CHEM. SOC.
9
VOL. 129, NO. 28, 2007