Terpyridine Liquid Crystals
FULL PAPER
CH), 8.65 ppm (s, 3H; NH); 13C{1H} DEPT NMR (75.47 MHz, CDCl3):
d = 13.69 (CH3), 14.10 (CH3), 22.69 (CH2), 26.10 (CH2), 26.16 (CH2),
29.38 (CH2), 29.47 (CH2), 29.62 (CH2), 29.66 (CH2), 29.72 (CH2), 29.75
(CH2), 30.36 (CH2), 31.93 (CH2), 69.16 (OCH2), 73.43 (OCH2), 105.94
(CH), 119.14 (CH), 121.55 (CH), 123.09 (CH), 123.97 (CH), 136.85 (CH),
148.93 (CH), 128.82 (Cq), 132.00 (Cq), 137.02 (Cq), 141.27 (Cq), 148.66
(Cq), 152.24 (Cq), 153.08 (Cq), 154.98 (Cq), 155.53 (Cq), 165.88 (C=O),
[5]M. Munakata, L. P. Wu, T. Kuroda-Sowa, Adv. Inorg. Chem. 1999,
46, 173–303.
[6]K. E. Drexler, Nanosystems, Molecular Machinery, Manufacturing
and Computation, Wiley, New York, 1992.
[7]a) J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D.
Moras, Proc. Natl. Acad. Sci. USA 1987, 84, 2565–2569; b) C.
Piguet, G. Hopfgartner, B. Bocquet, O. Schaad, A. F. Williams, J.
Am. Chem. Soc. 1994, 116, 9092–9102; c) T. Suzuki, H. Kotsuki, K.
Isobe, N. Moriya, Y. Nakagawa, M. Ochi, Inorg. Chem. 1995, 34,
530–531; d) E. Psillakis, J. C. Jeffery, J. A. McCleverty, M. D. Ward,
J. Chem. Soc. Dalton Trans. 1997, 1645–1651; e) M. Albrecht, R.
Frçhlich, J. Am. Chem. Soc. 1997, 119, 1656–1661; f) T. Hatano, A.-
H. Bae, M. Takeuchi, N. Fujita, K. Kaneko, H. Ihara, M. Takafuji, S.
Shinkai, Angew. Chem. 2004, 116, 471–475; Angew. Chem. Int. Ed.
2004, 43, 465–469.
[8]a) M. M. Chowdhry, D. M. P. Mingos, A. J. P. White, D. J. Williams,
Chem. Commun. 1996, 899–900; b) G. Smith, A. N. Reddy, K. A.
Byriel, C. H. L. Kennard, J. Chem. Soc. Dalton Trans. 1995, 3565–
3570.
[9]a) J. Dai, M. Yamamoto, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga,
M. Munakata, Inorg. Chem. 1997, 36, 2688–2690; b) M. Munakata,
L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, K. Sugimoto,
Inorg. Chem. 1997, 36, 4903–4905.
[10]a) A. S. Batsanov, M. J. Begley, P. Hubberstey, J. Stroud, J. Chem.
Soc. Dalton Trans. 1996, 1947–1957; b) M. Munakata, L. P. Wu, M.
Yamamoto, T. Kuroda-Sowa, M. Maekawa, J. Am. Chem. Soc. 1996,
118, 3117–3124.
[11]a) D. Whang, Y.-M. Jeon, J. Heo, K. Kim, J. Am. Chem. Soc. 1996,
118, 11333–11334; b) D. Whang, K. Kim, J. Am. Chem. Soc. 1997,
119, 451–452; c) D. Whang, K.-M. Park, J. Heo, P. Ashton, K. Kim,
J. Am. Chem. Soc. 1998, 120, 4899–4900; d) S.-G. Roh, K.-M. Park,
S. Sakamoto, K. Yamaguchi, K. Kim, Angew. Chem. 1999, 111, 671–
675; Angew. Chem. Int. Ed. 1999, 38, 638–641.
[12]D. L. Caulder, K. N. Raymond, J. Chem. Soc. Dalton Trans. 1999,
1185–1200.
[13]a) J. R. Black, N. R. Champness, W. Levason, G. Reid, Inorg. Chem.
1996, 35, 4432–4438; b) A. Pfitzner, S. Zimmerer, Angew. Chem.
1997, 109, 1031–1033; Angew. Chem. Int. Ed. Engl. 1997, 36, 982–
984.
168.02 ppm (C=O); IR (KBr): n˜
= 3437 (nNH), 3271 (nNH), 2923
(nCH), 2853(nCH), 1640 (nCO), 1584 (nC=C, nC=N), 1521 (dNH), 1494,
ACHTREUNG
1468, 1426, 1406 (nCH2), 1384, 1334, 1263, 1232, 1115 cmÀ1; UV/Vis
(CH2Cl2, 238C): lmax (e) = 277 (107700), 252 (96600 mÀ1 cmÀ1); MS
(FAB+, mNBA): m/z (%): 1724.2 (100) [M++H]; elemental analysis
calcd (%) for C110H174N6O9: C 76.61, H 10.17, N 4.87; : C 76.52, H 10.04,
N 4.75.
T12ethynyl: A Schlenk flask was charged with 2,6-bis(3,4,5-tridodecyloxy-
benzoylamino)-4-iodo-toluene (0.500 g, 0.32 mmol), 4’-ethynyl-2,2’:6’,2’’-
terpyridine (0.082 g, 0.32 mmol), [Pd(PPh3)2Cl2](0.014 g, 0.02 mmol),
N
THF (50 mL), and iPr2NH (5 mL). The mixture was thoroughly degassed
with argon. CuI (0.013 g, 0.06 mmol) was added and the mixture was stir-
red at room temperature for 24 h. The organic phase was filtered over
celite, washed with water (150 mL), and dried over MgSO4. After remov-
al of the solvent, chromatography on silica gel treated with triethylamine
(cyclohexane/CH2Cl2, gradient from 80:20 to 0:100) afforded the pure
compound (0.170 g, 32%). 1H NMR (200.1 MHz, CDCl3): d = 0.87 (m,
18H; CH3), 1.1–1.6 (m, 108H; CH2), 1.7–1.9 (m, 12H; CH2), 2.24 (s, 3H;
3
CH3), 4.02 (t, J = 6.05 Hz, 12H; OCH2), 7.13 (s, 4H), 7.32 (m, 2H), 7.67
(s, 2H), 7.84 (td, 3J = 7.7 Hz, 4J = 1.7 Hz, 2H), 8.04 (s, 2H), 8.48 (s,
2H), 8.56 (d, 3J = 7.8 Hz, 2H), 8.67 ppm (d, 3J = 4.0 Hz, 2H); 13C{1H}
DEPT NMR (75.47 MHz, CDCl3): d
= 13.5 (CH3), 14.1 (CH3), 22.7
(CH2), 26.1 (CH2), 29.4 (CH2), 29.6 (CH2), 29.7 (CH2), 30.4 (CH2), 31.9
(CH2), 69.4 (OCH2), 73.6 (OCH2), 106.0 (CH), 121.2 (CH), 122.9 (CH),
123.9 (CH), 125.6 (CH), 136.8 (CH), 149.2 (CH), 87.8 (Cq), 92.9 (Cq),
120.87 (Cq), 128.0 (Cq), 129.1 (Cq), 133.2 (Cq), 136.7 (Cq), 141.7 (Cq),
153.3 (Cq), 155.5 (Cq), 155.7 (Cq), 165.9 ppm (C=O); IR (KBr): n˜
=
3400 (nNH), 3194 (nNH), 2915, 2852, 1638 (nCO), 1607, 1583, 1517
(dNH), 1493, 1467, 1426, 1391, 1337, 1264, 1233, 1114, 1067, 1041 cmÀ1
;
UV/Vis (CH2Cl2, 238C): lmax (e) = 254 (53910), 284 (77110 mÀ1 cmÀ1);
MS (FAB+, mNBA): m/z (%): 1691.2 (100) [M++H]; elemental analysis
calcd (%) for C110H171N5O8: C 78.10, H 10.19, N 4.14; found: C 77.90, H
9.83, N 3.93.
[14]C. Piguet, J. Inclusion Phenom. Macrocyclic Chem. 1999, 34, 361–
391.
[15]B. Olenyuk, A. Fechtenkçtter, P. J. Stang, J. Chem. Soc. Dalton
Trans. 1998, 1707–1728.
Acknowledgements
[16]O. Mamula, A. Von Zelewsky, G. Bernardinelli, Angew. Chem. 1998,
110, 302–305; Angew. Chem. Int. Ed. 1998, 37, 289–293.
[17]a) J. S. Lindsey, New J. Chem. 1991, 15, 153–180; b) D. S. Lawrence,
T. Jiang, M. Levett, Chem. Rev. 1995, 95, 2229–2260; c) D. Philp,
J. F. Stoddart, Angew. Chem. 1996, 108, 1243–1286; Angew. Chem.
Int. Ed. Engl. 1996, 35, 1154–1196.
[18]a) B. Hasenknopf, J. M. Lehn, B. O. Kneisel, G. Baum, D. Fenske,
Angew. Chem. 1996, 108,1987–1990; Angew. Chem. Int. Ed. Engl.
1996, 35, 1838–1840; b) M. Schwach, H. D. Hausen, W. Kaim,
Chem. Eur. J. 1996, 2, 446–451; c) C. R. Woods, M. Benaglia, F.
Cozzi, J. S. Siegel, Angew. Chem. 1996, 108, 1985–1987; Angew.
Chem. Int. Ed. Engl. 1996, 35, 1830–1833.
[19]a) J.-C. Chambron, C. O. Dietrich-Buchecker, J.-P. Sauvage, Top.
Curr. Chem. 1993, 165, 131–162; b) J.-C. Chambron, C. O. Dietrich-
Buchecker, V. Heitz, J.-F. Nierengarten, J.-P. Sauvage, Transition
Metals in Supramolecular Chemistry (Eds.: L. Fabbrizzi, A. Poggi),
NATO ASI Series, 1993, 448, 371–390.
[20]a) C. Piguet, G. Hopfgartner, B. Bocquet, O. Schaad, A. F. Williams,
J. Am. Chem. Soc. 1994, 116, 9092–9102; b) C. Piguet, G. Hopfgart-
ner, A. F. Williams, J.-C. G. Bünzli, Chem. Commun. 1995, 491–492.
[21]a) R. Ziessel, D. Matt, L. Toupet, Chem. Commun. 1995, 2033–
2034; b) F. M. Romero R. Ziessel, A. Dupont-Gervais, A. Van Dors-
selaer, Chem. Commun. 1996, 551–552.
This work was supported by the University Louis Pasteur (ULP), the
School of Chemical Engineering (ECPM), and the CNRS. We gratefully
acknowledge Dr. Benoît Heinrich for his skilled assistance and helpful
discussions, and ClØment Vuilleumier who took an active part in the
SAXS experiments on gels. We thank Dr. P. Schultz for the use of the
cryofracturing apparatus developed by Dr. J.-C. Homo at the IGBMC
UMR 7104, Illkirch, France.
[1]J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
[2]a) R. Ziessel, M. Hissler, A. El-ghayoury, A. Harriman, Coord.
Chem. Rev. 1998, 180, 1251–1298; b) V. Ramamurthy, K. S. Schanze,
Multimetallic and Macromolecular Inorganic Photochemistry, Marcel
Dekker, New York, 1999.
[3]a) P. Haisch, G. Winter, M. Hanack, L. Lüer, H.-J. Egelhaai, D.
Oelkrug, Adv. Mater. 1997, 9, 316–321; b) A. M. Van de Craats,
J. M. Warman, A. Fechenkçtter, J. D. Brand, M.A. Harbison, K.
Müllen, Adv. Mater. 1999, 11, 1469–1472.
[4]a) J. L. Serrano, Metallomesogens, VCH, Weinheim, 1996; b) D.
Guillon, Struct. Bonding (Berlin) 1999, 95, 41–82; c) B. Donnio, D.
Guillon, D. W. Bruce, R. Deschenaux, Metallomesogens In Compre-
hensive Coordination Chemistry II: From Biology to Nanotechnolo-
gy, Vol. 7 (Eds.: J. A. McCleverty, T. J. Meyer, M. Fujita, A. Powell),
Elsevier, Oxford, 2003, Chapter 7.9, pp. 357–627.
[22]C. L. Hill, X. Zhang, Nature 1995, 373, 324–326.
Chem. Eur. J. 2006, 12, 4261 – 4274
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4273