pubs.acs.org/joc
and natural products.3 Protected vinylglycinol 1 has been
Catalytic Enantioselective Synthesis of 4-Vinyl-2-
trichloromethyloxazoline: An Access to
Enantioenriched Vinylglycinol Surrogate
obtained in enantiomerically pure form by separation of
racemic mixture4 or starting from enantiopure serine,2a,5
methionine,1b,c,2a,6 and buten-1,2-diol.7 Chiral auxiliary-
controlled diastereoselective addition of vinyl-organometallic
reagents to oxime ethers8 or sulfinylimines9 has also been
used to obtain vinylglycinol 1 derivatives in high enantio-
meric purity. In addition, several synthetically useful
enantioselective catalytic methods have been developed.
Asymmetric Pd(0)-catalyzed allylic alkylation of phthalimide
with butadiene monoxide provided N-Phth protected
vinylglycinol 2.3a-c,10 Enantioselective Ir catalysis has been
used for the amination of allylic carbonates leading to a
range of N,O- or N-protected vinylglycinols 3.11 Asymmetric
Ni(0)- and Pd(II)-catalyzed cyclization of allylic carbamates
to N-protected vinyloxazolidinones 4 has been reported.12,13
Rearrangement of O-allylic acetimidates catalyzed by planary
chiral Pd(II) complexes has provided N-trichloroacetyl- and
N-trifluoroacetylvinylglycinol derivatives 5 in high enantio-
meric excess (Figure 1).14
Ansis Maleckis, Kristine Klimovica, and Aigars Jirgensons*
Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
Received September 10, 2010
Cationic Pd(II) catalysts generated from chiral biphenyl
diphosphine complexes or from COP-Cl promote enantio-
selective cyclization of E- and Z-configured allylic bis-
trichloroacetimidates to highly enantioenriched 2-tri-
chloromethyl-4-vinyloxazoline. This represents an
exclusive example for olefin amination in high yield
and enantioselectivity with trichloroacetimidate as the
N-nucleophile by using a cationic palladium(II) complex
as a catalyst providing an easy-to-deprotect enantio-
enriched vinylglycinol derivative.
FIGURE 1. Vinylglycinol 1 and its derivatives 2-5 obtained by
enantioselective catalysis.
2-Trichloromethyl-4-vinyloxazoline (8) (Scheme 1) is a use-
ful vinylglycinol surrogate for the synthesis of complex prod-
ucts.4,15 Unfortunately, it has been obtained only in racemic
form by a Pd(II)-catalyzed cyclization of bis-trichloroacetimidate
Z-7. The high synthetic utility of vinyloxazoline 8 prompted
Vinylglycinol 1 and its protected analogues (Figure 1) have
been widely used as building blocks for the synthesis of un-
natural amino acids,1 pharmaceutically relevant compounds,2
(4) Sabat, M.; Johnson, C. R. Org. Lett. 2000, 2, 1089.
(5) (a) Lubell, W.; Rapoport, H. J. Org. Chem. 1989, 54, 3824.
(b) Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. Synthesis 1998, 1707.
(6) (a) Ohfune, Y.; Kurokawa, N. Tetrahedron Lett. 1984, 25, 1071.
(b) Lumbroso, A.; Coeffard, V.; Le Grognec, E.; Beaudet, I.; Quintard,
J.-P. Tetrahedron Lett. 2010, 51, 3226.
(7) (a) Rao, A. V. R.; Bose, D. S.; Gurjar, M. K.; Ravindranathan, T.
Tetrahedron 1989, 45, 7031. (b) Evans, P. A.; Robinson, J. E. Org. Lett. 1999,
1, 1929. (c) Evans, P. A.; Robinson, J. E.; Nelson, J. D. J. Am. Chem. Soc.
1999, 121, 6761.
(1) (a) Brackmann, F.; Colombo, N.; Cabrele, C.; de Meijere, A. Eur. J.
€
Org. Chem. 2006, 4440. (b) Krebs, A.; Ludwig, V.; Pfizer, J.; Durner, G.;
Gobel, M W. Chem.;Eur. J. 2004, 10, 544–553. (c) Suhartono, M.;
€
€
€
Weidlich, M.; Stein, T.; Karas, M.; Durner, G.; Gobel, M. W. Eur. J. Org.
Chem. 2008, 1608.
(2) (a) Keyes, R. F.; Carter, J. J.; Zhang, X.; Ma, Z. Org. Lett. 2005, 7,
847. (b) Yamanoi, K.; Ohfune, Y.; Watanabe, K.; Li, P. N.; Takeuchi,
H. Tetrahedron Lett. 1988, 29, 1181. (c) Hashimoto, K.; Horikawa, M.;
Shirahama, H. Tetrahedron Lett. 1990, 31, 7047. (d) Horikawa, M.; Hashimoto,
K.; Shirahama, H. Tetrahedron Lett. 1993, 34, 331. (e) Yoo, S.-E.; Sang-Hee,
L.; Nakcheol, J.; Inho, C. Tetrahedron Lett. 1993, 34, 3435. (f) Shimamoto,
K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org. Chem. 1991, 56, 4167.
(g) Del Valle, J. R.; Goodman, M. J. Org. Chem. 2004, 69, 8946.
(3) (a) Trost, B. M.; Horne, D. B.; Woltering, M. J. Angew. Chem., Int.
Ed. 2003, 42, 5987. (b) Trost, B. M.; Horne, D. B.; Woltering, M. J. Chem.;
(8) Cooper, T. S.; Laringo, A. S.; Laurent, P.; Moody, C. J.; Takle, A. K.
Org. Biomol. Chem. 2005, 3, 1252.
(9) Rech, J. C.; Yato, M.; Duckett, D.; Ember, B.; LoGrasso, P. V.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 490.
(10) (a) Trost, B. M.; Bunt, R. C. Angew. Chem. 1996, 108, 70. (b) Trost,
B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. J. Am. Chem. Soc. 2000,
122, 5968.
€
(11) Gnamm, C.; Franck, G.; Miller, N.; Stork, T.; Brodner, K.; Helmchen,
G. Synthesis 2008, 3331.
€
Eur. J. 2006, 12, 6607. (c) Dewi-Wulfing, P.; Blechert, S. Eur. J. Org. Chem.
(12) Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661.
(13) (a) Overman, L. E.; Remarchuk, T. P. J. Am. Chem. Soc. 2002, 124,
12. (b) Kirsch, S. F.; Overman, L. E. J. Org. Chem. 2005, 70, 2859.
(14) (a) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125,
12412. (b) Jautze, S.; Seiler, P.; Peters, R. Chem.;Eur. J. 2008, 14, 1430.
(15) Spiegel, D. A.; Schroeder, F. C.; Duvall, J. R.; Schreiber, S. L. J. Am.
Chem. Soc. 2006, 128, 14766.
2006, 1852. (d) Yokokawa, F.; Asano, T.; Okino, T.; Gerwick, W. H.; Shioiri,
T. Tetrahedron 2004, 60, 6859. (e) Tang, M.; Pyne, S. G. J. Org. Chem. 2003,
68, 7818. (f) Takahata, H.; Banba, Y.; Ouchi, H.; Nemoto, H.; Kato, A.;
Adachi, I. J. Org. Chem. 2003, 68, 3603. (g) Sabat, M.; Johnson, C. R.
Tetrahedron Lett. 2001, 42, 1209. (h) Yoo, S.-E.; Lee, S. H. J. Org. Chem.
1994, 59, 6968.
DOI: 10.1021/jo101781y
r
Published on Web 10/25/2010
J. Org. Chem. 2010, 75, 7897–7900 7897
2010 American Chemical Society