Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7477-64-7

Post Buying Request

7477-64-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7477-64-7 Usage

General Description

1-(4-Chlorophenyl)ethane-1,2-diol, also known as chlorophenyl-ethanediol, is a chemical compound with the molecular formula C8H9ClO2. It is a diol, meaning it contains two hydroxyl (OH) groups, and it is derived from the compound 1,4-dichlorobenzene. This chemical is often used as a precursor in the synthesis of pharmaceuticals and other organic compounds, and it possesses antioxidant properties. It has also been studied for its potential application as an antifungal agent. The presence of the chlorine group lends it to various chemical reactions and potential industrial uses.

Check Digit Verification of cas no

The CAS Registry Mumber 7477-64-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,7 and 7 respectively; the second part has 2 digits, 6 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 7477-64:
(6*7)+(5*4)+(4*7)+(3*7)+(2*6)+(1*4)=127
127 % 10 = 7
So 7477-64-7 is a valid CAS Registry Number.
InChI:InChI=1/C8H9ClO2/c9-7-3-1-6(2-4-7)8(11)5-10/h1-4,8,10-11H,5H2

7477-64-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-chlorophenyl)ethane-1,2-diol

1.2 Other means of identification

Product number -
Other names 4-chloro-1-phenyl-1,2-ethanediol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7477-64-7 SDS

7477-64-7Relevant articles and documents

Catalytic Diastereo- and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen

Feng, Wei,Gao, Taotao,Lau, Kai Kiat,Lin, Yamei,Pan, Hui-Jie,Yang, Binmiao,Zhao, Yu

supporting information, p. 18599 - 18604 (2021/08/09)

We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C?N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.

The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst

Chao, Rebecca R.,Lau, Ian C.-K.,Coleman, Tom,Churchman, Luke R.,Child, Stella A.,Lee, Joel H. Z.,Bruning, John B.,De Voss, James J.,Bell, Stephen G.

, p. 14765 - 14777 (2021/09/14)

The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)?1.min?1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.

Liquid-phase oxidation of olefins with rare hydronium ion salt of dinuclear dioxido-vanadium(V) complexes and comparative catalytic studies with analogous copper complexes

Maurya, Abhishek,Haldar, Chanchal

, (2021/02/26)

Homogeneous liquid-phase oxidation of a number of aromatic and aliphatic olefins was examined using dinuclear anionic vanadium dioxido complexes [(VO2)2(salLH)]? (1) and [(VO2)2(NsalLH)]? (2) and dinuclear copper complexes [(CuCl)2(salLH)]? (3) and [(CuCl)2(NsalLH)]? (4) (reaction of carbohydrazide with salicylaldehyde and 4-diethylamino salicylaldehyde afforded Schiff-base ligands [salLH4] and [NsalLH4], respectively). Anionic vanadium and copper complexes 1, 2, 3, and 4 were isolated in the form of their hydronium ion salt, which is rare. The molecular structure of the hydronium ion salt of anionic dinuclear vanadium dioxido complex [(VO2)2(salLH)]? (1) was established through single-crystal X-ray analysis. The chemical and structural properties were studied using Fourier transform infrared (FT-IR), ultraviolet–visible (UV–Vis), 1H and 13C nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI-MS), electron paramagnetic resonance (EPR) spectroscopy, and thermogravimetric analysis (TGA). In the presence of hydrogen peroxide, both dinuclear vanadium dioxido complexes were applied for the oxidation of a series of aromatic and aliphatic alkenes. High catalytic activity and efficiency were achieved using catalysts 1 and 2 in the oxidation of olefins. Alkenes with electron-donating groups make the oxidation processes easy. Thus, in general, aromatic olefins show better substrate conversion in comparison to the aliphatic olefins. Under optimized reaction conditions, both copper catalysts 3 and 4 fail to compete with the activity shown by their vanadium counterparts. Irrespective of olefins, metal (vanadium or copper) complexes of the ligand [salLH4] (I) show better substrate conversion(%) compared with the metal complexes of the ligand [NsalLH4] (II).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7477-64-7