1708-29-8Relevant articles and documents
FT Raman - A valuable tool for surveying kinetics in RCM of functionalized dienes
Ding, Fu,Yu, Baoyi,Monsaert, Stijn,Sun, Ya-Guang,Gao, Enjun,Dragutan, Ileana,Dragutan, Valerian,Verpoort, Francis
, p. 170 - 174 (2010)
In this article the suitability of FT Raman spectroscopy for monitoring kinetics of ring-closing metathesis promoted by the Grubbs' 1st generation precatalyst was demonstrated for the first time. Reactions at room temperature and under low catalyst loadings were carried out on a series of representative diene substrates. The time evolution of the characteristic Raman stretching vibrations unequivocally described the reaction progress allowing for precise calculation of the substrate conversion and of the yield in the expected cyclic product, based on the corresponding peak heights. The responsive Raman technique demonstrated clean RCM pathways for diethyl diallylmalonate and diallyl ether whereas a minor olefinic side-product was detected in the case of diallyl phthalate. The study provides essential underpinnings for future utilization of Raman spectroscopy, concurrently with NMR or supplementing it, for the evaluation of RCM reactions.
Supported Molybdenum Catalysts for the Deoxydehydration of 1,4-Anhydroerythritol into 2,5-Dihydrofuran
Sandbrink, Lennart,Beckerle, Klaus,Meiners, Isabell,Liffmann, Rebecca,Rahimi, Khosrow,Okuda, Jun,Palkovits, Regina
, p. 1375 - 1379 (2017)
Efficient deoxygenation strategies are crucial for the valorization of renewable feedstocks. Deoxydehydration (DODH) enables the direct transformation of two adjacent hydroxyl groups into a double bond. Supported molybdenum-based catalysts were utilized for the first time in DODH. MoOx/TiO2 showed superior catalytic activity compared to common molybdenum salts. The catalyst efficiently converted 1,4-anhydroerythritol into 2,5-dihydrofuran in the presence of 3-octanol as reducing agent, showing high reproducibility and stability.
Bidentate N,O-prolinate ruthenium benzylidene catalyst highly active in RCM of disubstituted dienes
Samec, Joseph S. M.,Grubbs, Robert H.
, p. 2826 - 2828 (2007)
The synthesis of a bidentate N,O-prolinate ruthenium benzylidene from commercially available starting materials and its activity in ring-closing metathesis of functionalized disubstituted dienes at 30°C is disclosed. The Royal Society of Chemistry.
HETEROCYCLIZATION OF 1-ACETOXY-4-HALO-SUBSTITUTED 2-BUTENES IN THE PRESENCE OF ALKALI
Gevorkyan, A. A.,Kazaryan, P. I.,Avakyan, S. V.
, p. 1088 - 1090 (1988)
The reaction of 1-acetoxy-4-halo-substituted 2-butenes with potassium hydroxide was studied.It was established that trans-1,4-dihaloacetates form α-oxides of 1,3-dienes, whereas the corresponding cis isomers form 2,5-dihydrofuran derivatives.It was observed that the acetyl group in these compounds facilitates, as compared with halovinylhydrins, the formation of the corresponding heterocycles under the conditions described.
Stepwise or Concerted Addition of 1,3-Butadiene to Oxygen Adsorbed on the Ag(110) Surface?
Schioett, Birgit,Joergensen, Karl Anker
, p. 10738 - 10741 (1993)
The interaction of 1,3-butadiene with atomically adsorbed oxygen on a Ag(110) surface is studied.Three different approaches of 1,3-butadiene to an oxygen atom that is adsorbed in the two-fold bridging site of the grooves on the Ag(110) surface are studied: a cheletropic 1,4-cycloaddition, an interaction with the terminal carbon, and an interaction with the internal carbon of the 1,3-butadiene.Extended Hueckel tight-binding calculations show that the interaction of one of the terminal carbons of 1,3-butadiene with the surface oxygen is favored.This intermediate shows a preference for a 1,4 ring closure reaction rather than a 1,2 ring closure reaction, leading to 2,5-dihydrofurane instead of vinyl epoxide.The interaction between the suggested intermediates and the Ag(110) surface as well as the bonding of different adsorbed products are analyzed and discussed in relation to the experimental results.
Microwave-Assisted Ring-Closing Metathesis Revisited. On the Question of the Nonthermal Microwave Effect
Garbacia, Stefania,Desai, Bimbisar,Lavastre, Olivier,Kappe, C. Oliver
, p. 9136 - 9139 (2003)
The ring-closing metathesis reactions (RCM) of six standard diene substrates leading to five-, six-, or seven-membered carbo- or heterocycles were investigated under controlled microwave irradiation. RCM protocols were performed with standard Grubbs type II and a cationic ruthenium allenylidene catalyst in neat and ionic liquid-doped methylene chloride under sealed vessel conditions. Very rapid conversions (15 s) were achieved utilizing 0.5 mol % Grubbs II catalyst under microwave conditions. Careful comparison studies indicate that the observed rate enhancements are not the result of a nonthermal microwave effect.
Bis(phenolato)molybdenum complexes as catalyst precursors for the deoxydehydration of biomass-derived polyols
Beckerle, Klaus,Sauer, Andreas,Spaniol, Thomas P.,Okuda, Jun
, p. 105 - 110 (2016)
Bio-based polyols can be converted to olefins and furan derivatives in one step by combined reduction and dehydration (deoxydehydration, DODH). A series of octahedral complexes of hexavalent molybdenum containing an (OSSO)-type bis(phenolate) ligand were prepared and structurally characterized. These complexes were screened as catalyst precursors for the deoxydehydration of anhydroerythritol using 3-octanol as reducing agent. Microwave heating allows a lower reaction temperature.
Ring-Closing Olefin Metathesis Catalyzed by Well-Defined Vanadium Alkylidene Complexes
Belov, Dmitry S.,Tejeda, Gabriela,Tsay, Charlene,Bukhryakov, Konstantin V.
supporting information, p. 4578 - 4582 (2021/02/11)
Vanadium-based catalysts have shown activity and selectivity in ring-opening metathesis polymerization of strained cyclic olefins comparable to those of Ru, Mo, and W catalysts. However, the application of V alkylidenes in routine organic synthesis is limited. Here, we present the first example of ring-closing olefin metathesis catalyzed by well-defined V chloride alkylidene phosphine complexes. The developed catalysts exhibit tolerance to various functional groups, such as an ether, an ester, a tertiary amide, a tertiary amine, and a sulfonamide. The size and electron-donating properties of the imido group and the phosphine play a crucial role in the stability of active intermediates. Reactions with ethylene and olefins suggest that both β-hydride elimination of the metallacyclobutene and bimolecular decomposition are responsible for catalyst degradation.
Method for preparing olefin by catalyzing dehydration and deoxidation of polyhydroxy compound with organic molybdenum
-
Paragraph 0122; 0124-0125; 0136; 0138, (2020/07/02)
The invention discloses a method for preparing olefin by catalyzing dehydration and deoxidation of a polyhydroxy compound with organic molybdenum. The method comprises the following steps: reacting apolyhydroxy compound-containing raw material in the presence of an organic molybdenum-based catalyst to obtain olefin. According to the method, compounds containing nitrogen, sulfur, oxygen, phosphorus and other monodentate and polydentate coordination groups are used as organic ligands, and a series of organic molybdenum catalysts are prepared and used for catalyzing a deoxidation and dehydrationreaction of vicinal diol. The invention provides a cheap non-noble metal molybdenum-based catalyst, wherein the cost is greatly reduced.
N,N,O-Coordinated tricarbonylrhenium precatalysts for the aerobic deoxydehydration of diols and polyols
Klein Gebbink, Robertus J. M.,Li, Jing,Lutz, Martin
, p. 3782 - 3788 (2020/06/22)
Rhenium complexes are well known catalysts for the deoxydehydration (DODH) of vicinal diols (glycols). In this work, we report on the DODH of diols and biomass-derived polyols using L4Re(CO)3as precatalyst (L4Re(CO)3= tricarbonylrhenium 2,4-di-tert-butyl-6-(((2-(dimethylamino)ethyl)(methyl)amino)methyl)phenolate). The DODH reaction was optimized using 2 mol% of L4Re(CO)3as precatalyst and 3-octanol as both reductant and solvent under aerobic conditions, generating the active high-valent rhenium speciesin situ. Both diol and biomass-based polyol substrates could be applied in this system to form the corresponding olefins with moderate to high yield. Typical features of this aerobic DODH system include a low tendency for the isomerization of aliphatic external olefin products to internal olefins, a high butadiene selectivity in the DODH of erythritol, the preferential formation of 2-vinylfuran from sugar substrates, and an overall low precatalyst loading. Several of these features indicate the formation of an active species that is different from the species formed in DODH by rhenium-trioxo catalysts. Overall, the bench-top stable and synthetically easily accessible, low-valent NNO-rhenium complex L4Re(CO)3represents an interesting alternative to high-valent rhenium catalysts in DODH chemistry.