874-60-2Relevant articles and documents
One-step Conversion of Amides and Esters to Acid Chlorides with PCl3
Li, Fangshao,Wu, Xiaofang,Guo, Fengzhe,Tang, Zi-Long,Xiao, Jing
supporting information, p. 4314 - 4317 (2021/07/16)
A general and efficient iodine-promoted chlorination of amides and esters with phosphorus trichloride is described. For the first time. Various inactivated amides including secondary and tertiary amides were directly converted to the corresponding acid chlorides in one-step. The substrate scope of methyl esters including aromatic and aliphatic esters was also explored under this system. This method is simple, scalable and wide in scope, which provides an approach to preparation of these acid chlorides.
PCl3-mediated transesterification and aminolysis of tert-butyl esters via acid chloride formation
Wu, Xiaofang,Zhou, Lei,Li, Fangshao,Xiao, Jing
, p. 491 - 497 (2021/01/20)
A PCl3-mediated conversion of tert-butyl esters into esters and amides in one-pot under air is developed. This novel protocol is highlighted by the synthesis of skeletons of bioactive molecules and gram-scale reactions. Mechanistic studies revealed that this transformation involves the formation of an acid chloride in situ, which is followed by reactions with alcohols or amines to afford the desired products.
Palladium-Catalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide
Bismuto, Alessandro,Boehm, Philip,Morandi, Bill,Roediger, Sven
supporting information, p. 17887 - 17896 (2020/08/19)
An efficient palladium-catalyzed chlorocarbonylation of aryl (pseudo)halides that gives access to a wide range of carboxylic acid derivatives has been developed. The use of butyryl chloride as a combined CO and Cl source eludes the need for toxic, gaseous carbon monoxide, thus facilitating the synthesis of high-value products from readily available aryl (pseudo)halides. The combination of palladium(0), Xantphos, and an amine base is essential to promote this broadly applicable catalytic reaction. Overall, this reaction provides access to a great variety of carbonyl-containing products through in situ transformation of the generated aroyl chloride. Combined experimental and computational studies support a reaction mechanism involving in situ generation of CO.
A practical chlorination of tert-butyl esters with PCl3 generating acid chlorides
Wu, Xiaofang,Zhou, Lei,Yang, Ruoqi,Guo, Fengzhe,Tang, Zi-Long,Xiao, Jing
, p. 301 - 304 (2020/01/29)
For the first time, using PCl3, a range of tert-butyl esters is chlorinated successfully, allowing access of both aromatic acid chlorides and aliphatic acid chlorides in good yields. The method features simple reaction conditions and wide substrate scope. Various tert-butyl esters including aryl esters, alkenyl esters, and alkyl esters were tolerated well in the reaction. A plausible mechanism is proposed.
Functional Group Transposition: A Palladium-Catalyzed Metathesis of Ar-X σ-Bonds and Acid Chloride Synthesis
De La Higuera Macias, Maximiliano,Arndtsen, Bruce A.
, p. 10140 - 10144 (2018/08/23)
We describe the development of a new method to use palladium catalysis to form functionalized aromatics: via the metathesis of covalent σ-bonds between Ar-X fragments. This transformation demonstrates the dynamic nature of palladium-based oxidative addition/reductive elimination and offers a straightforward approach to incorporate reactive functional groups into aryl halides through exchange reactions. The reaction has been exploited to assemble acid chlorides without the use of high energy halogenating or toxic reagents and, instead, via the metathesis of aryl iodides with other acid chlorides.
Method of co-producing methyl benzoic acid, methylbenzoyl chloride and phthaloyl dichloride
-
Paragraph 15-17; 27; 28, (2018/06/16)
The invention discloses a method of co-producing methyl benzoic acid, methylbenzoyl chloride and phthaloyl dichloride. The method comprises the following steps: (1) continuously introducing xylene, acatalyst and oxygen-containing gas into an oxidizing reactor to react to obtain an oxidized reaction solution; (2) rectifying and separating the oxidized reaction solution to obtain a low-boiling-point component and an initial evaporative tower bottom; (3) rectifying the initial evaporative tower bottom to obtain a methyl benzoic acid product and a tower bottom; (4) carrying out an acylating chlorination reaction on the tower bottom and an acylating chlorination reagent to obtain an acyl chloride reaction solution; and (5) rectifying and separating the acyl chloride reaction solution to separately obtain methylbenzoyl chloride and phthaloyl dichloride products. The method provided by the invention has the advantages of being simple in process, small in equipment investment, green and environment-friendly and good in comprehensive economical benefit.
Anhydrides from aldehydes or alcohols via oxidative cross-coupling
Gaspa, Silvia,Amura, Ida,Porcheddu, Andrea,De Luca, Lidia
supporting information, p. 931 - 939 (2017/02/10)
A novel type of metal-free oxidative cross-coupling for the synthesis of symmetrical and mixed anhydrides from aldehydes or benzylic alcohols has been developed. The aldehydes or alcohols were converted in situ into their corresponding acyl chlorides, which were then reacted with an array of carboxylic acids. The methodology has a general applicability, and was successfully employed to prepare either aromatic or aliphatic symmetrical anhydrides and mixed anhydrides, which are very unstable compounds.
Metal-free oxidative self-coupling of aldehydes or alcohols to symmetric carboxylic anhydrides
Gaspa, Silvia,Porcheddu, Andrea,De Luca, Lidia
supporting information, p. 2533 - 2536 (2017/06/13)
A metal-free synthesis of symmetrical anhydrides has been developed starting from aldehydes, both aliphatic and aromatic or primary benzylic alcohols. The reaction occurs at room temperature and makes use of trichloroisocyanuric acid (TCCA) as an oxidant providing the desired carboxylic anhydrides in satisfactory yields.
A General Cp*CoIII-Catalyzed Intramolecular C?H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids
Lerchen, Andreas,Knecht, Tobias,Koy, Maximilian,Daniliuc, Constantin G.,Glorius, Frank
supporting information, p. 12149 - 12152 (2017/09/13)
Herein, we report a Cp*CoIII-catalyzed C?H activation approach as the key step to create highly valuable isoquinolones and pyridones as building blocks that can readily be applied in the total syntheses of a variety of aromathecin, protoberberine, and tylophora alkaloids. This particular C?H activation/annulation reaction was achieved with several terminal as well as internal alkyne coupling partners delivering a broad scope with excellent functional group tolerance. The synthetic applicability of this protocol reported herein was demonstrated in the total syntheses of two Topo-I-Inhibitors and two 8-oxyprotoberberine cores that can be further elaborated into the tetrahydroprotoberberine and the protoberberine alkaloid core. Moreover these building blocks were also transformed to six different tylophora alkaloids in expedient fashion.
From Aryl Iodides to 1,3-Dipoles: Design and Mechanism of a Palladium Catalyzed Multicomponent Synthesis of Pyrroles
Torres, Gerardo M.,Quesnel, Jeffrey S.,Bijou, Diane,Arndtsen, Bruce A.
supporting information, p. 7315 - 7324 (2016/07/06)
A palladium-catalyzed multicomponent synthetic route to polysubstituted pyrroles from aryl iodides, imines, carbon monoxide, and alkynes is described. To develop this reaction, a series of mechanistic studies on the [Pd(allyl)Cl]2/PtBu3 catalyzed synthesis of imidazolinium carboxylates from aryl iodides, imines, and carbon monoxide were first performed, including model reactions for each individual step in the transformation. These show that this reaction proceeds in a concurrent tandem catalytic fashion, and involves the in situ formation of acid chlorides, N-Acyl iminium salts, and ultimately 1,3-dipoles, i.e., Münchnones, for subsequent cycloaddition. By employing a Pd(PtBu3)2/Bu4NCl catalyst, this information was used to design the first four-component synthesis of Münchnones. Coupling the latter with 1,3-dipolar cycloaddition with electron deficient alkynes or alkenes can be used to generate diverse families of highly substituted pyrroles in good yield. This represents a modular and streamlined new approach to this class of heterocycles from readily accessible starting materials.