66-99-9Relevant articles and documents
Effect of Mo loading on 2-naphthaldehyde formation from vapor phase oxidation of 2-methylnaphthalene with V2O5/TiO2 catalysts
Gao, Xiaoqiang,Zhang, Fang,Yu, Yi,Dou, Yonghui,Xu, Li,Liu, Guoji
, p. 47 - 51 (2019)
Mo-modified V2O5/TiO2 catalysts were prepared by wetness impregnation method and investigated for the selective oxidation of 2-methylnaphthalene to 2-naphthaldehyde. The catalysts were characterized by XRD, BET, XPS, and Raman to investigate the promotional effect of Mo on catalyst structure, surface property, and catalytic performance. The introduction of molybdenum decreases the amount of KVO3 phase and enhances the dispersion of the vanadium phase. XPS and Raman results indicate that Mo prevents Sn and K to interact with V species and bonds with Ti or V through bridge oxygen. V1Mo1 sample demonstrates a remarkable improvement in conversion and selectivity compared with others.
Aerobic oxidation of alcohols enabled by nitrogen-doped copper nanoparticle catalysts
Kobayashi, Shū,Tobita, Fumiya,Yamashita, Yasuhiro,Yasukawa, Tomohiro
, p. 1043 - 1048 (2022/03/02)
Heterogeneous nitrogen-doped carbon-incarcerated copper nanoparticle catalysts have been developed. The catalysts promoted the oxidation of alcohols to the corresponding aldehydes, including aliphatic substrates, in high yield in the presence of an N-oxyl
Controlled reduction of activated primary and secondary amides into aldehydes with diisobutylaluminum hydride
Azeez, Sadaf,Kandasamy, Jeyakumar,Sabiah, Shahulhameed,Sureshbabu, Popuri
supporting information, p. 2048 - 2053 (2022/03/31)
A practical method is disclosed for the reduction of activated primary and secondary amides into aldehydes using diisobutylaluminum hydride (DIBAL-H) in toluene. A wide range of aryl and alkyl N-Boc, N,N-diBoc and N-tosyl amides were converted into the corresponding aldehydes in good to excellent yields. Reduction susceptible functional groups such as nitro, cyano, alkene and alkyne groups were found to be stable. Broad substrate scope, functional group compatibility and quick conversions are the salient features of this methodology.
Selective functionalization of benzylic C-H bonds of two different benzylic ethers by bowl-shaped N -hydroxyimide derivatives as efficient organoradical catalysts
Kato, Terumasa,Maruoka, Keiji
supporting information, p. 1021 - 1024 (2022/02/01)
A highly efficient, site-selective benzylic C-H bond amination of two different benzylic ether substrates was described by using bowl-shaped N-hydroxyimide organoradical catalysts with diethyl azodicarboxylate. The synthetic utility of this approach is demonstrated by the subsequent transformation of the amination products into the corresponding aldehydes and alkylhydrazines.
Highly atom efficient synthesis of 2,2,4,5-tetrasubstituted 3(2H)-furanones having both hydroxyl and amino substituents
Antony, Jesna,Mathai, Sindhu,Natarajan, Rakesh,P. Musthafa, Sumi,Rappai, John P.,S. Devaky, Karakkattu
supporting information, (2022/02/25)
We have developed a highly atom efficient synthesis of tetrasubstituted 3(2H)-furanones from easily accessible starting materials such as C,N-diarylaldonitrones and dibenzoylacetylene. Control experiments revealed that reaction of aldonitrones having electron-withdrawing groups on the C-aryl substituent in polar aprotic solvents exhibited high product selectivity while reaction temperature has only a negligible effect on product yield and selectivity.
New method for promoting photosensitive oxidation to remove 1, 2-mercaptoethanol acetal protecting group by utilizing visible light irradiation
-
Paragraph 0014-0016, (2021/01/30)
The invention discloses a new method for removing a 1, 2-mercaptoethanol acetal protecting group, and belongs to the field of organic synthetic chemistry. The method comprises the following steps of:under a room-temperature open system, adding a substrate 2-substituted-1, 3-oxo-thio-cyclopentane and a catalytic amount of a photosensitizer Eosin Y into a proper amount of acetonitrile; and performing irradiating with a blue LED lamp for 3 hours while stirring to obtain the corresponding aldehyde compound with favorable yield. The method has the advantages of mild operation conditions, greenness, environmental protection, no harsh water and oxygen removal operation and device, realization of the reaction at room temperature, high substrate conversion rate, simple and easy post-treatment, andprovides a good method for removing the 1, 2-mercaptoethanol acetal protecting group at present.
Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids
Tiburcio, Estefanía,Greco, Rossella,Mon, Marta,Ballesteros-Soberanas, Jordi,Ferrando-Soria, Jesús,López-Haro, Miguel,Hernández-Garrido, Juan Carlos,Oliver-Meseguer, Judit,Marini, Carlo,Boronat, Mercedes,Armentano, Donatella,Leyva-Pérez, Antonio,Pardo, Emilio
, p. 2581 - 2592 (2021/02/16)
Metal single-atom catalysts (SACs) promise great rewards in terms of metal atom efficiency. However, the requirement of particular conditions and supports for their synthesis, together with the need of solvents and additives for catalytic implementation, often precludes their use under industrially viable conditions. Here, we show that palladium single atoms are spontaneously formed after dissolving tiny amounts of palladium salts in neat benzyl alcohols, to catalyze their direct aerobic oxidation to benzoic acids without ligands, additives, or solvents. With this result in hand, the gram-scale preparation and stabilization of Pd SACs within the functional channels of a novel methyl-cysteine-based metal-organic framework (MOF) was accomplished, to give a robust and crystalline solid catalyst fully characterized with the help of single-crystal X-ray diffraction (SCXRD). These results illustrate the advantages of metal speciation in ligand-free homogeneous organic reactions and the translation into solid catalysts for potential industrial implementation.
Selective oxidation of alkenes to carbonyls under mild conditions
Huo, Jie,Xiong, Daokai,Xu, Jun,Yue, Xiaoguang,Zhang, Pengfei,Zhang, Yilan
supporting information, p. 5549 - 5555 (2021/08/16)
Herein, a practical and sustainable method for the synthesis of aldehydes, ketones, and carboxylic acids from an inexpensive olefinic feedstock is described. This transformation features very sustainable and mild conditions and utilizes commercially available and inexpensive tetrahydrofuran as the additive, molecular oxygen as the sole oxidant and water as the solvent. A wide range of substituted alkenes were found to be compatible, providing the corresponding carbonyl compounds in moderate-to-good yields. The control experiments demonstrated that a radical mechanism is responsible for the oxidation reaction.
Hydroxyl radical-mediated oxidative cleavage of CC bonds and further esterification reaction by heterogeneous semiconductor photocatalysis
Hong, Mei,Jia, Rui,Miao, Hongyan,Ni, Bangqing,Niu, Tengfei,Wang, Hui
, p. 6591 - 6597 (2021/09/10)
A hydroxyl radical-mediated aerobic cleavage of alkenes and further sequence esterification reaction for the preparation of carbonyl compounds have been developed by using tubular carbon nitride (TCN) as a general heterogeneous photocatalyst under an oxygen atmosphere with visible light irradiation. This protocol has an excellent substrate scope and gives the desired aldehydes, ketones and esters in moderate to high yields. Importantly, this metal-free procedure employed photogenerated hydroxyl radicals in situ as green oxidation active species, avoiding the present additional initiators. The reaction could be carried out under solar light irradiation and was applicable to large-scale reactions. Furthermore, the recyclable TCN catalyst could be used several times without a significant loss of activities.
Aryl aldiketone and synthesis method thereof
-
Paragraph 0019, (2021/09/26)
The invention discloses an aryl aldehyde ketone and a synthesis method thereof, wherein an aryl aldehyde is synthesized from cheap olefin as a raw material. A commercially available inexpensive olefin is used as a raw material, ether is used as an additive, molecular oxygen serves as a sole oxidizing agent, water is used as a solvent, and the aldehyde and ketone are synthesized by column chromatography under a photocatalytic condition. The invention has the advantages of mild reaction conditions, green and environmental protection, simple experimental operation, good reaction selectivity, high product yield and the like.