72-19-5Relevant articles and documents
Squamins C–F, four cyclopeptides from the seeds of Annona globiflora
Sosa-Rueda, Javier,Domínguez-Meléndez, Vanihamin,Ortiz-Celiseo, Araceli,López-Fentanes, Fernando C.,Cuadrado, Cristina,Fernández, José J.,Daranas, Antonio Hernández,Cen-Pacheco, Francisco
, (2021/08/04)
Four cyclic octapeptides, squamins C–F, were isolated from the seeds of Annona globiflora Schltdl. These compounds share part of their amino acid sequence, -Pro-Met(O)-Tyr-Gly-Thr-, with previously reported squamins A and B. Their structures were determined using NMR spectroscopic techniques together with quantum mechanical calculations (QM-NMR), ESI-HRMS data and a modified version of Marfey's chromatographic method. All compounds showed cytotoxic activity against DU-145 (human prostate cancer) and HeLa (human cervical carcinoma) cell lines. Clearly, A. globiflora is an important source of bioactive molecules, which could promote the sustainable exploitation of this undervalued specie.
Cyclic Tetrapeptides with Synergistic Antifungal Activity from the Fungus Aspergillus westerdijkiae Using LC-MS/MS-Based Molecular Networking
Chen, Baosong,Dai, Huanqin,Han, Junjie,Li, Erwei,Liu, Hongwei,Lyu, Zhitang,Song, Fuhang,Sun, Jingzu,Wang, Hanying,Wang, Tao,Wang, Wenzhao,Zhang, Rui
, (2022/02/17)
Fungal natural products play a prominent role in the development of pharmaceuticalagents. Two new cyclic tetrapeptides (CTPs), westertide A (1) and B (2), with eight known compounds (3-10) were isolated from the fungus Aspergillus westerdijkiae guided by
Noncovalently Functionalized Commodity Polymers as Tailor-Made Additives for Stereoselective Crystallization
Wan, Xinhua,Wang, Zhaoxu,Ye, Xichong,Zhang, Jie
supporting information, p. 20243 - 20248 (2021/08/09)
Stereoselective inhibition of the nucleation and crystal growth of one enantiomer aided by “tailor-made” polymeric additives is an efficient method to obtain enantiopure compounds. However, the conventional preparation of polymeric additives from chiral monomers are laborious and limited in structures, which impedes their rapid optimization and applicability. Herein, we report a “plug-and-play” strategy to facilitate synthesis by using commercially available achiral polymers as the platform to attach various chiral small molecules as the recognition side-chains through non-covalent interactions. A library of supramolecular polymers made up of two vinyl polymers and six small molecules were applied with seeds in the selective crystallization of seven racemates in different solvents. They showed good to excellent stereoselectivity in yielding crystals with high enantiomeric purities in conglomerates and racemic compound forming systems. This convenient, low-cost modular synthesis strategy of polymeric additives will allow for high-efficient, economical resolution of various racemates on different scales.
Direct monitoring of biocatalytic deacetylation of amino acid substrates by1H NMR reveals fine details of substrate specificity
De Cesare, Silvia,McKenna, Catherine A.,Mulholland, Nicholas,Murray, Lorna,Bella, Juraj,Campopiano, Dominic J.
supporting information, p. 4904 - 4909 (2021/06/16)
Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that thel-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range ofN-acyl-amino acid substrates. This activity was revealed by1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.
Two new threonine-containing metabolites from fungus Curvularia inaequalis strain HS-FG-257
Zhang, Shao-Yong,Li, Jian-Song,Zhang, Hui,Qi, Huan,Wang, Rui-Jun,Wu, Chou-Fei,Zhang, Li-Qin,Chen, An-Liang,Wang, Ji-Dong,Hao, Zhi-Kui
, p. 482 - 487 (2020/07/10)
Two new threonine-containing metabolites, N-[4-hydroxy-3-prenyl-benzoyl]-L-threonine (1) and N-[2,2-dimethyl-2H-chromene-6-carbonyl]-L-threonine (2), were isolated from the fermentation broth of the soil fungus Curvularia inaequalis strain HS-FG-257. Their structures were elucidated through the interpretation of HR-ESIMS and extensive NMR spectroscopic data. Both compounds exhibited no cytotoxic activity against the test cell lines A549 and HCT-116.
Androsamide, a Cyclic Tetrapeptide from a Marine Nocardiopsis sp., Suppresses Motility of Colorectal Cancer Cells
Lee, Jihye,Gamage, Chathurika. D. B.,Kim, Geum Jin,Hillman, Prima F.,Lee, Chaeyoung,Lee, Eun Young,Choi, Hyukjae,Kim, Hangun,Nam, Sang-Jip,Fenical, William
, p. 3166 - 3172 (2020/11/02)
A cyclic tetrapeptide, androsamide (1), was isolated from a marine actinomycete of the genus Nocardiopsis, strain CNT-189. The planar structure of 1 was assigned by the interpretation of 1D and 2D NMR spectroscopic data. The absolute configurations of constituent amino acids of 1 were determined by application of the Marfey's and advanced Marfey's methods. Androsamide (1) strongly suppressed the motility of Caco2 cells caused by epithelial-mesenchymal transition.
Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte, Derbesia sp., Using MS/MS-Based Molecular Networking
Cottrell, Garrison W.,Fang, Fang,Gerwick, Lena,Gerwick, William H.,Glukhov, Evgenia,Guan, Huashi,Kim, Hyunwoo,Leao, Tiago,Li, Yueying,Mao, Huanru Henry,Murray, Thomas F.,Pierce, Marsha L.,Yu, Hao-Bing,Zhang, Chen,Zhang, Yi
supporting information, (2020/01/31)
A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (1), was isolated from laboratory cultures of a marine Chlorophyte, Derbesia sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth. The planar structure of pagoamide A (1) was characterized by detailed 1D and 2D NMR experiments along with MS and UV analysis. The absolute configurations of its amino acid residues were determined by advanced Marfey's analysis following chemical hydrolysis and hydrazinolysis reactions. Two of the residues in pagoamide A (1), phenylalanine and serine, each occurred twice in the molecule, once in the d- and once in the l-configuration. The biosynthetic origin of pagoamide A (1) was considered in light of other natural products investigations with coenocytic green algae.
Mechanism of eukaryotic serine racemase-catalyzed serine dehydration
Goto, Masaru,Hemmi, Hisashi,Ito, Tomokazu,Matsuoka, Mai,Matsushita, Kazuma,Mizobuchi, Taichi,Nasu, Ryoma,Watanabe, Soichiro,Yoshimura, Tohru
, (2020/06/08)
Eukaryotic serine racemase (SR) is a pyridoxal 5′-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-D-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.
A new O-cinnamoyl threonine derivative from gene adpA overexpression strain Streptomyces sp. HS-NF-1222A
Qi, Huan,Ma, Zheng,Xue, Zheng-Lian,Yu, Zhen,Xu, Qing-Yu,Zhang, Hui,Yu, Xiao-Ping,Wang, Ji-Dong
, p. 2080 - 2085 (2019/03/11)
A new O-cinnamoyl threonine derivative, O-(2-(3-methyloxiranyl) cinnamoyl) threonine (1), was isolated from the gene adpA overexpression strain Streptomyces sp. HS-NF-1222A. The structure of 1 was determined based on HRESIMS and extensive NMR analysis.
Heterologous production of asperipin-2a: Proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase
Ye, Ying,Ozaki, Taro,Umemura, Myco,Liu, Chengwei,Minami, Atsushi,Oikawa, Hideaki
supporting information, p. 39 - 43 (2019/01/04)
Asperipin-2a is a ribosomally synthesized and post-translationally modified peptide isolated from Asperigillus flavus. Herein, we report the heterologous production of asperipin-2a and determination of its absolute structure. Notably, the characteristic bicyclic structure was likely constructed by a single oxidase containing the DUF3328 domain.