Relevant articles and documents
All total 168 Articles be found
Hydrolysis of amides to carboxylic acids catalyzed by Nb2O5
Siddiki,Rashed, Md. Nurnobi,Touchy, Abeda Sultana,Jamil, Md. A. R.,Jing, Yuan,Toyao, Takashi,Maeno, Zen,Shimizu, Ken-Ichi
, p. 1949 - 1960 (2021/03/26)
Hydrolysis of amides to carboxylic acids is an industrially important reaction but is challenging due to the difficulty of cleaving the resonance stabilized amidic C-N bond. Twenty-three heterogeneous and homogenous catalysts were examined in the hydrolysis of acetamide. Results showed that Nb2O5was the most effective heterogeneous catalyst with the greatest yield of acetic acid. A series of Nb2O5catalysts calcined at various temperatures were characterized and tested in the hydrolysis of acetamide to determine the effects of crystal phase and surface properties of Nb2O5on catalytic performance. The high catalytic performance observed was attributed mainly to the facile activation of the carbonyl bond by Lewis acid sites that function even in the presence of basic inhibitors (NH3and H2O). The catalytic studies showed the synthetic advantages of the present method, such as simple operation, catalyst recyclability, additive free, solvent free, and wide substrate scope (>40 examples; up to 95% isolated yield).
(Hexamethylbenzene)Ru catalysts for the Aldehyde-Water Shift reaction
Phearman, Alexander S.,Moore, Jewelianna M.,Bhagwandin, Dayanni D.,Goldberg, Jonathan M.,Heinekey, D. Michael,Goldberg, Karen I.
supporting information, p. 1609 - 1615 (2021/03/09)
The Aldehyde-Water Shift (AWS) reaction uses H2O as a benign oxidant to convert aldehydes to carboxylic acids, producing H2, a valuable reagent and fuel, as its sole byproduct. (Hexamethylbenzene)RuIIcomplexes are demonstrated to have higher activity and selectivity (up to 95%) for AWS over disproportionation than previously reported catalysts.
Toward Orally Absorbed Prodrugs of the Antibiotic Aztreonam. Design of Novel Prodrugs of Sulfate Containing Drugs. Part 2
Ding, Pingyu,Duncton, Matthew A. J.,Fan, Dazhong,Gordon, Eric M.,Grygorash, Ruslan,Li, Xianfeng,Low, Eddy,Ni, Zhi-Jie,Qi, Longwu,Sun, Jiawei,Wang, Brian J.,Yu, Guijun
supporting information, p. 162 - 165 (2020/01/31)
Aztreonam, first discovered in 1980, is an FDA approved, intravenous, monocyclic beta-lactam antibiotic. Aztreonam is active against Gram-negative bacteria and is still used today. The oral bioavailability of aztreonam in humans is less than 1%. Herein we describe the design and synthesis of potential oral prodrugs of aztreonam.
Nucleophilic reactivity of a mononuclear cobalt(iii)-bis(: Tert -butylperoxo) complex
Cho, Jaeheung,Jeong, Donghyun,Park, Younwoo,Shin, Bongki
supporting information, p. 9449 - 9452 (2020/09/07)
A mononuclear cobalt(III)-bis(tert-butylperoxo) adduct (CoIII-(OOtBu)2) bearing a tetraazamacrocyclic ligand was synthesized and characterized using various physicochemical methods, such as X-ray, UV-vis, ESI-MS, EPR, and NMR analyses. The crystal structure of the CoIII-(OOtBu)2 complex clearly showed that two OOtBu ligands bound to the equatorial position of the cobalt(iii) center. Kinetic studies and product analyses indicate that the CoIII-(OOtBu)2 intermediate exhibits nucleophilic oxidative reactivity toward external organic substrates.
Organocatalyzed Aerobic Oxidation of Aldehydes to Acids
Dai, Peng-Fei,Qu, Jian-Ping,Kang, Yan-Biao
supporting information, p. 1393 - 1396 (2019/02/26)
The first example organocatalyzed aerobic oxidation of aldehydes to carboxylic acids in both organic solvent and water under mild conditions is developed. As low as 5 mol % N-hydroxyphthalimide was used as the organocatalyst, and molecular O2 was used as the sole oxidant. No transition metals or hazardous oxidants or cocatalysts were involved. A wide range of carboxylic acids bearing diverse functional groups were obtained from aldehydes, even from alcohols, in high yields.