specially designed water-soluble ligands/organometallic com-
plexes is essential for its use.
The synthesis of the imidazolium phosphine ligands is
shown in Scheme 1. In the presence of catalytic amounts of
Classical transition-metal catalyst precursors are, in many
cases, “soluble” in imidazolium ILs and are not removed
from the ionic solution by the majority of organic com-
pounds. Indeed various catalytic processes can be “directly”
transposed in ionic liquids, such as those based on homo-
geneous transition-metal catalyst precursors and colloids,
with great advantages compared with those performed in
organic solvents or in water.9,10 This is one of the great
advantages of ILs in organometallic catalysis, that is, they
allow the direct transposition of well-known homogeneous
processes for liquid-liquid biphasic conditions without the
use of specially designed ligands/complexes that are neces-
sary for aqueous, perfluorinated, or supercritical fluid-based
catalytic processes. However, in some cases classical metal
catalysts are removed from the ionic liquid by the products
formed, and ionic modified ligands such as phosphines
should be used to minimize catalyst leaching.11 This is the
case in the hydroformylation reactions for which mono- and
diphosphine ligands containing the imidazolium moiety have
been developed12 or for the hydrogen transfer reactions for
which imidazolium containing η6-arene ligands have been
used.13 Ring-closing metathesis reactions14-16 can be per-
formed by simple dissolution of Grubbs first or second
generation catalysts,17,18 allenylidene ruthenium precursors19
or Hoveyda type catalysts bearing imidazolium fragments20
dissolved in ionic liquids. However, no simple ionophilic
ruthenium-phosphine catalysts precursors for ring-closing
metathesis in ILs have been reported so far.
Scheme 1. Synthesis of Phosphine Ligands
the appropriate radical initiator, the radical chain addition
of secondary phosphines to allyl or vinyl imidazolium salts
was easily performed.21 The addition of HPPh2 to the allyl
imidazolium salt 122 and vinyl imidazolium salt 222 is
straightforward, and almost quantitative conversions are
attained with the mild radical initiator azobis(isobutyronitrile)
(AIBN). Ligands 4 and 6 were isolated as colorless oils in
94% and 88% yields. Radical addition of the bulkier HPCy2
fails with AIBN, and with the high-temperature radical
initiator dicumyl peroxide, a complex mixture of products
was obtained. The target ligand 3 was successfully synthe-
sized in 87% yield as a white solid by using the radical
initiator azobis(cyclohexanecarbonitrile) (ABCN). The reac-
tion of the vinylimidazolium salt 2 with HPCy2 promoted
by ABCN gives the target ligand 5 together with byproducts
which could not be separated. Despite the low reactivity of
the allyl group toward secondary aliphatic phosphine addi-
tion, the method described offers a simple, single-step
strategy for the synthesis of phosphine ligands bearing an
ionic fragment. This methodology was succinctly mentioned
but not exploited in earlier literature.23
We report herein the synthesis of a new family of
phosphine ligands that bear an imidazolium fragment and
consist of a versatile ligand class for IL biphasic catalysis.
We also report the syntheses of a second generation Grubbs
type compound with high IL affinity and with potential for
RCM reaction in ionic media.
(9) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. ReV. 2002, 102,
3667-3691.
(10) Parvulescu, V. I.; Hardacre, C. Chem. ReV. 2007, 107, 2615-2665.
(11) Wasserscheid, P.; Waffenschmidt, H. ACS Symp. Ser. 2002, 818,
373-386.
(12) (a) Bronger, R. P. J.; Silva, S. M.; Kamer, P. C. J.; van Leeuwen,
P. Chem. Commun. 2002, 3044-3045. (b) Favre, F.; Olivier-Bourbigou,
H.; Commereuc, D.; Saussine, L. Chem. Commun. 2001, 1360-1361. (c)
Dupont, J.; Silva, S. M.; de Souza, R. F. Catal. Lett. 2001, 77, 131-133.
(13) Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc. 2004, 126, 8114-
8115.
In particular this method has several advantages over
others reported so far such as those based on base-catalyzed
addition of primary or secondary phosphines to 1-vinylimi-
dazole,24 alkylation of imidazoles with bromoalkyl(diphe-
nylphosphine) oxides folowed by phosphine reduction,25,26
or nucleophilic substitution using bromo-alkyl-1-methylimi-
dazolium salts.27 However, the phosphines are prepared in
four steps in the case of base-catalyzed method and the
(14) (a) Astruc, D. Actual. Chim. 2004, 3-11. (b) Astruc, D. New J.
Chem. 2005, 29, 42-56.
(15) Deshmukh, P. H.; Blechert, S. Dalton Trans. 2007, 2479-2491.
(16) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Wein-
heim, Germany, 2003.
(20) Semeril, D.; Olivier-Bourbigou, H.; Bruneau, C.; Dixneuf, P. H.
Chem. Commun. 2002, 146-147.
(21) Rauhut, M. M.; Semsel, A. M.; Wystrach, V. P.; Currier, H. A. J.
Org. Chem. 1961, 26, 5138-5139.
(17) Buijsman, R. C.; van Vuuren, E.; Sterrenburg, J. G. Org. Lett. 2001,
3, 3785-3787.
(22) See Supporting Information.
(18) Stark, A.; Ajam, M.; Green, M.; Raubenheimer, H. G.; Ranwell,
A.; Ondruschka, B. AdV. Synth. Catal. 2006, 348, 1934-1941.
(19) (a) Audic, N.; Clavier, H.; Mauduit, M.; Guillemin, J. C. J. Am.
Chem. Soc. 2003, 125, 9248-9249. (b) Clavier, H.; Audic, N.; Mauduit,
M.; Guillemin, J. C. Chem. Commun. 2004, 2282-2283. (c) Clavier, H.;
Audic, N.; Guillemin, J. C.; Mauduit, M. J. Organomet. Chem. 2005, 690,
3585-3599. (d) Rix, D.; Clavier, H.; Coutard, Y.; Gulajski, L.; Grela, K.;
Maudint, M. J. Organomet. Chem. 2006, 691, 5397-5405. (e) Rix, D.;
Caijo, F.; Laurent, I.; Gulajski, L.; Grela, K.; Mauduit, M. Chem. Commun.
2007, 3771-3773. (f) Thurier, C.; Fischmeister, C.; Bruneau, C.; Olivier-
Bourbigou, H.; Dixneuf, P. H. J. Mol. Catal. A-Chem. 2007, 268, 127-
133. (g) Yao, Q. W.; Zhang, Y. L. Angew. Chem., Int. Ed. 2003, 42, 3395-
3398. (h) Yao, Q. W.; Sheets, M. J. Organomet. Chem. 2005, 690, 3577-
3584.
(23) Danopoulos, A. A.; Winston, S.; Gelbrich, T.; Hursthouse, M. B.;
Tooze, R. P. Chem. Commun. 2002, 482-483.
(24) Kottsieper, K. W.; Stelzer, O.; Wasserscheid, P. J. Mol. Catal.
A-Chem. 2001, 175, 285-288.
(25) Tsoureas, N.; Danopoulos, A. A.; Tulloch, A. A. D.; Light, M. E.
Organometallics 2003, 22, 4750-4758.
(26) Herrmann, W. A.; Kocher, C.; Goossen, L. J.; Artus, G. R. J. Chem.-
Eur. J. 1996, 2, 1627-1636.
(27) (a) Yang, C. L.; Lee, H. M.; Nolan, S. P. Org. Lett. 2001, 3, 1511-
1514. (b) Lee, S. G.; Zhang, Y. J.; Piao, J. Y.; Yoon, H.; Song, C. E.;
Choi, J. H.; Hong, J. Chem. Commun. 2003, 2624-2625. (c) Lee, H. M.;
Zeng, J. Y.; Hu, C. H.; Lee, M. T. Inorg. Chem. 2004, 43, 6822-6829. (d)
Field, L. D.; Messerle, B. A.; Vuong, K. Q.; Turner, P. Organometallics
2005, 24, 4241-4250.
238
Org. Lett., Vol. 10, No. 2, 2008