1776
H. S. Lee et al. / Tetrahedron Letters 49 (2008) 1773–1776
3317–3320; (d) Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalin-
gam, S.; Worakun, T. Tetrahedron 1990, 46, 4003–4018.
Y.; Noguchi, T.; Ando, I.; Ogura, N.; Ikeda, S.; Hashimoto, H. J.
Med. Chem. 2006, 49, 6950–6953; (c) Faust, R.; Garratt, P. J.; Jones,
R.; Yeh, L.-K.; Tsotinis, A.; Panoussopoulou, M.; Calogeropoulou,
T.; Teh, M.-T.; Sugden, D. J. Med. Chem. 2000, 43, 1050–1061; (d)
Rivara, S.; Mor, M.; Silva, C.; Zuliani, V.; Vacondio, F.; Spadoni, G.;
Bedini, A.; Tarzia, G.; Lucini, V.; Pannacci, M.; Fraschini, F.; Plazzi,
P. V. J. Med. Chem. 2003, 46, 1429–1439.
4. For the Pd-mediated reactions involving Baylis–Hillman adducts, see:
(a) Ribiere, P.; Declerck, V.; Nedellec, Y.; Yadav-Bhatnagar, N.;
Martinez, J.; Lamaty, F. Tetrahedron 2006, 62, 10456–10466; (b)
Declerck, V.; Ribiere, P.; Nedellec, Y.; Allouchi, H.; Martinez, J.;
Lamaty, F. Eur. J. Org. Chem. 2007, 201–208; (c) Vasudevan, A.;
Tseng, P.-S.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591–8593; (d)
Coelho, F.; Veronese, D.; Pavam, C. H.; de Paula, V. I.; Buffon, R.
Tetrahedron 2006, 62, 4563–4572.
5. Gowrisankar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim, J. N.
Tetrahedron Lett. 2007, 48, 8619–8622 and further references cited
therein on the synthesis and biological activities of benzoazepino[2, 1-a]
isoindole moiety-containing compounds. For the general review on
Baylis–Hillman reaction, please see: (a) Basavaiah, D.; Rao, A. J.;
Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Ciganek, E.. In
Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New
York, 1997; Vol. 51, pp 201–350; (c) Basavaiah, D.; Rao, P. D.;
Hyma, R. S. Tetrahedron 1996, 52, 8001–8062; (d) Kim, J. N.; Lee, K.
Y. Curr. Org. Chem. 2002, 6, 627–645; (e) Lee, K. Y.; Gowrisankar,
S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481–1490 and
further references cited therein.
6. (a) For the preparation of benzoazepino[1,2-a]indole derivatives as
inhibitors of hepatitis C virus (HCV) replication, see: Hudyma, T. W.;
Zheng, X.; He, F.; Ding, M.; Bergstrom, C. P.; Hewawasam, P.;
Martin, S. W.; Gentles, R. G. WO 2007092000, 2007; Chem. Abstr.
2007, 147, 277782; (b) Meanwell, N. A.; Gentles, R. G.; Ding, M.;
Bender, J. A.; Kadow, J. F.; Hewawasam, P.; Hudyma, T. W.; Zheng,
X. U.S. Patent 2,007,184,024, 2007; Chem. Abstr. 2007, 147, 257667.
7. For the synthesis and biological importance of 1,7-annulated indole
derivatives, see: (a) Al-awar, R. S.; Ray, J. E.; Hecker, K. A.; Huang,
J.; Waid, P. P.; Shih, C.; Brooks, H. B.; Spencer, C. D.; Watkins, S.
A.; Patel, B. R.; Stamm, N. B.; Ogg, C. A.; Schultz, R. M.; Considine,
E. L.; Faul, M. M.; Sullivan, K. A.; Kolis, S. P.; Grutsch, J. L.;
Joseph, S. Bioorg. Med. Chem. Lett. 2004, 14, 3217–3220; (b) Zhu, G.;
Conner, S. E.; Zhou, X.; Chan, H.-K.; Shih, C.; Engler, T. A.;
Al-awar, R. S.; Brooks, H. B.; Watkins, S. A.; Spencer, C. D.;
Schultz, R. M.; Dempsey, J. A.; Considine, E. L.; Patel, B. R.; Ogg, C.
A.; Vasudevan, V.; Lytle, M. L. Bioorg. Med. Chem. Lett. 2004, 14,
3057–3061; (c) Van Wijngaarden, I.; Hamminga, D.; van Hes, R.;
Standaar, P. J.; Tipker, J.; Tulp, M. Th. M.; Mol, F.; Olivier, B.; de
Jonge, A. J. Med. Chem. 1993, 36, 3693–3699; (d) Toscano, L.;
Grisanti, G.; Fioriello, G.; Seghetti, E.; Bianchetti, A.; Bossoni, G.;
Riva, M. J. Med. Chem. 1976, 19, 208–213.
9. (a) Bodwell, G. J.; Li, J. Org. Lett. 2002, 4, 127–130; (b) Caddick, S.;
Shering, C. L.; Wadman, S. N. Tetrahedron 2000, 56, 465–473.
10. Typical procedure for the synthesis of 3a and 4a: To a stirred solution
of indole (2a, 117 mg, 1.0 mmol) and KOH (79 mg, 1.2 mmol) in
DMF (1.5 mL) was added a solution of Baylis–Hillman acetate 1a
(376 mg, 1.2 mmol) in DMF (0.5 mL) at 0 °C, and maintained at 0 °C
for 4 h with stirring. After the usual aqueous workup and column
chromatographic purification process (hexanes/EtOAc, 10:1), we
obtained 3a (271 mg, 73%) as a white solid. A stirred mixture of 3a
(185 mg, 0.5 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), TBAB (161 mg,
0.5 mmol), and K2CO3 (138 mg, 1.0 mmol) in DMF (2 mL) was
heated to 100 °C for 1 h. After the usual aqueous workup and column
chromatographic purification process (hexanes/ether, 10:1), we
obtained 4a (95 mg, 65%) as a pale yellow solid. Other compounds
3b–g and 4b–g were synthesized similarly and the representative
spectroscopic data of compounds 3a, 4a, and 4f are as follows:
Compound 3a: 73%; white solid, mp 95–97 °C; IR (film) 1717, 1463,
1435, 1248 cmÀ1; 1H NMR (CDCl3, 300 MHz) d 3.74 (s, 3H), 5.03 (s,
2H), 6.43 (d, J = 3.3 Hz, 1H), 6.99–7.30 (m, 7H), 7.56 (d, J = 6.9 Hz,
1H), 7.68 (d, J = 7.5 Hz, 1H), 7.98 (s, 1H); 13C NMR (CDCl3,
75 MHz) d 42.26, 52.36, 101.54, 109.52, 119.36, 120.72, 121.41,
123.87, 127.47, 127.48, 128.50, 129.51, 130.14, 130.53, 133.10, 134.90,
136.04, 142.48, 166.81; ESIMS m/z 370.09 (M++H).
Compound 4a: 65%; yellow solid, mp 142–144 °C; IR (film) 1705,
1457, 1242 cmÀ1; 1H NMR (CDCl3, 300 MHz) d 3.84 (s, 3H), 4.97 (s,
2H), 6.74 (s, 1H), 7.08–7.13 (m, 1H), 7.20–7.28 (m, 1H), 7.35–7.48 (m,
3H), 7.57 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.85 (d,
J = 8.1 Hz, 1H), 7.86 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 39.19,
52.41, 101.23, 109.27, 119.78, 120.71, 122.00, 127.58, 128.16, 129.66,
129.98, 130.22, 131.82 (2C), 133.15, 136.33, 139.21, 142.71, 166.03;
ESIMS m/z 290.19 (M++H). Anal. Calcd for C19H15NO2: C, 78.87;
H, 5.23; N, 4.84. Found: C, 78.67; H, 5.47; N, 4.76.
Compound 4f: 53%; white solid, mp 179–181 °C; IR (film) 1714, 1438,
1
1225 cmÀ1; H NMR (CDCl3, 300 MHz) d 2.57 (d, J = 0.6 Hz, 3 H),
3.73 (s, 3H), 4.82 (d, J = 14.1 Hz, 1H), 5.01 (d, J = 14.1 Hz, 1H), 6.21
(d, J = 0.6 Hz, 1H), 6.77 (dd, J = 7.2 and 0.6 Hz, 1H), 7.05–7.10 (m,
1H), 7.18 (d, J = 7.2 Hz, 1H), 7.35–7.52 (m, 4H), 8.10 (s, 1H); 13C
NMR (CDCl3, 75 MHz) d 12.65, 40.91, 52.03, 100.52, 119.47, 119.98,
125.76, 125.78, 126.74, 127.39, 129.47, 130.08, 131.65, 133.48, 134.62,
135.23, 137.72, 140.25, 145.46, 166.62; ESIMS m/z 304.18 (M++H).
Anal. Calcd for C20H17NO2: C, 79.19; H, 5.65; N, 4.62. Found: C,
79.05; H, 5.78; N, 4.53.
8. For the synthesis and biological importance of tetracyclic indole
derivatives, see: (a) Bressy, C.; Alberico, D.; Lautens, M. J. Am.
Chem. Soc. 2005, 127, 13148–13149 and further references cited
therein; (b) Ikegashira, K.; Oka, T.; Hirashima, S.; Noji, S.;
Yamanaka, H.; Hara, Y.; Adachi, T.; Tsuruha, J.-I.; Doi, S.; Hase,