co-workers found that the Lewis acid mediated reactions of
4-acetoxy-2-azetidinones with acyldiazo compounds led to
the generation of 4-(2-oxoethylidene)-ꢀ-lactams.5 Fustero et
al. showed that palladium-catalyzed intramolecular hy-
droamination of difluoropropargyl amides afforded fluori-
nated ꢀ-lactams.6 However, both Z- and E-isomers were
obtained, and the method is limited to R,R-difluoro-
substituted amides. It is therefore of interest to develop
general and efficient methods for the synthesis of 4-alky-
lidene-ꢀ-lactams. Herein we report a highly efficient and
convenient approach to these molecules via Cu(I)-catalyzed
intramolecular N-vinylation of amides.
enamides underwent cyclization in refluxing dioxane, leading
to the formation of five-, six-, and even seven-membered
lactams.10b It is certainly highly desirable to extend this
method to the synthesis of 4-alkylidene-ꢀ-lactams.11 How-
ever, our initial trial with 3-iodobut-3-enamide under the
abovementioned conditions failed to give the desired ꢀ-lac-
tam product.10b The reaction was rather complicated while
all the starting material was consumed.
To explore the possible ꢀ-lactam formation under Cu(I)
catalysis, we then chose N-phenyl-3-bromobut-3-enamide
(1a) as the model substrate and carried out the optimization
of reaction conditions (Table 1). Substrate 1a was first
The formation of aryl C-N bonds via copper-catalyzed
Ullmann coupling between aryl halides and N-centered
nucleophiles has received considerable attention in the past
few years.7 The high stability and low cost of the copper
catalysts enable these transformations to be a useful comple-
ment to the more extensively investigated Pd(0)-catalyzed
processes.8 By the appropriate choice of copper source,
ligand, base, and reaction temperature, these coupling
reactions have been developed to include a wide range of
substrates under mild conditions. This method was success-
fully extended to vinylic C-N bond formation and found
important application in natural product synthesis.9 During
our investigation on Cu(I)-catalyzed intramolecular vinylation
reactions,10 we found that, with CuI as the catalyst and N,N′-
dimethylethylenediamine as the ligand, a number of iodoalk-
Table 1. Optimization of the Synthesis of 2a from 1a
yield (%)c
entry
liganda
base
solvent/timeb
2a
3
4
1
2
3
4
5
6
7
8
A
A
A
A
A
B
C
D
E
Cs2CO3
K2CO3
K2CO3
Cs2CO3
K3PO4
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
dioxane (3 h)
dioxane (3 h)
THF (12 h)
THF (12 h)
THF (12 h)
THF (16 h)
THF (16 h)
THF (16 h)
THF (16 h)
THF (17 h)
THF (17 h)
THF (16 h)
13
38
70
10
16
0
69
25
91
94
94
17
25
40
25
20
21
0
6
23
0
0
0
0
0
0
86
9
30
6
4
0
(4) Bachi, M. D.; Goldberg, O.; Grass, A.; Vaya, J. J. Org. Chem. 1980,
45, 1481.
(5) (a) Cainelli, G.; Giacomini, D.; Galletti, P.; Quintavalla, A. Eur. J.
Org. Chem. 2003, 1765. (b) Cainelli, G.; Galletti, P.; Gazzano, M.;
Giacomini, D.; Quintavalla, A. Tetrahedron Lett. 2002, 43, 233. (c)
Battaglia, A.; Cainelli, G.; Giacomini, D.; Martelli, G.; Panunzio, M.
Tetrahedron Lett. 1987, 28, 4347.
9
10d
11e
12
E
E
none
0
0
63
(6) Fustero, S.; Fernandez, B.; Bello, P.; del Pozo, C.; Arimitsu, S.;
Hammond, G. B. Org. Lett. 2007, 9, 4251.
16
a A: N,N′-dimethylethylenediamine. B: 1,10-phenanthroline. C: 2-isobu-
tyrylcyclohexanone. D: L-proline. E: Me2NCH2CO2H·HCl. b Reaction
conditions: 1a (0.3 mmol), CuI (0.06 mmol), ligand (0.12 mmol), base (0.6
mmol), solvent (10 mL), reflux. c Isolated yield based on 1a. d 10 mol %
of CuI and 20 mol % of E were used. e 5 mol % of CuI and 10 mol % of
E were used.
(7) For reviews, see: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003,
2428. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400. (c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004,
248, 2337. (d) Deng, W.; Liu, L.; Guo, Q.-X. Chin. J. Org. Chem. 2004,
24, 150. (e) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973.
(f) Chemler, S. R.; Fuller, P. H. Chem. Soc. ReV. 2007, 36, 1153.
(8) For reviews, see: (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem.
2002, 219, 131. (b) Hartwig, J. F. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negichi, E.-i. Ed.; Wiley: New York,
2002; Vol. 1, p 1051. (c) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
2002, 41, 4176. (d) Prim, D.; Campagne, J. M.; Joseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041. (e) Yang, B. Y.; Buchwald, S. L. J. Organomet.
Chem. 1999, 576, 125. (f) Wolfe, J. P.; Wagaw, S.; Marcoux, J. -F.;
Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (g) Hartwig, J. F. Angew.
Chem., Int. Ed. 1998, 37, 2046. (h) Hartwig, J. F. Acc. Chem. Res. 1998,
31, 852.
subjected to the following typical Ullmann coupling condi-
tions: CuI (20 mol%), N,N′-dimethylethylenediamine (A, 40
mol%), Cs2CO3 (2 equiv) in refluxing dioxane. The reaction
was complete within 3 h, and the expected ꢀ-lactam 2a was
isolated in only 13% yield along with the formation of
ꢀ-ketoamide 3 (25%) (entry 1, Table 1). Switching the base
to K2CO3 increased the yields of both 2a and 3 (entry 2,
Table 1). Thinking that 3 might result from the decomposi-
tion of 2a, we lowered the reaction temperature. To our
delight, 2a was achieved in 70% yield when the reaction
was conducted in refluxing THF. K2CO3 was again proven
to be superior over Cs2CO3 and K3PO4 (entries 3-5, Table
1). We next screened the ligands.12 Changing the ligand A
to 1,10-phenanthroline (B) resulted in the generation of allene
(9) For the latest examples of copper-catalyzed N-vinylation, see:(a)
Jiang, B.; Tian, H.; Huang, Z.-G.; Xu, M. Org. Lett. 2008, 10, 2737. (b)
Fukudome, Y.; Naito, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2008,
130, 1820. (c) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47,
2109. (d) Martin, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521.
(e) Cesati, R. R., III; Dwyer, G.; Jones, R. C.; Hayes, M. P.; Yalamanchili,
P.; Casebier, D. S. Org. Lett. 2007, 9, 5617. (f) Martin, R.; Larsen, C. H.;
Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 3379. (g) He, G.; Wang,
J.; Ma, D. Org. Lett. 2007, 9, 1367. (h) Yang, L.; Deng, G.; Wang, D.-X.;
Huang, Z.-T.; Zhu, J.-P.; Wang, M.-X. Org. Lett. 2007, 9, 1387. (i) Rivero,
M. R.; Buchwald, S. L. Org. Lett. 2007, 9, 973. (j) Toumi, M.; Couty, F.;
Evano, G. Angew. Chem., Int. Ed. 2007, 46, 572. (k) Yuan, X.; Xu, X.;
Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org. Chem. 2007, 72, 1510.
(10) (a) Fang, Y.; Li, C. Chem. Commun. 2005, 3574. (b) Hu, T.; Li,
C. Org. Lett. 2005, 7, 2035. (c) Lu, H.; Li, C. Org. Lett. 2006, 8, 5365. (d)
Fang, Y.; Li, C. J. Am. Chem. Soc. 2007, 129, 8092. (e) Pan, Y.; Lu, H.;
Fang, Y.; Fang, X.; Chen, L.; Qian, J.; Wang, J.; Li, C. Synthesis 2007,
1242.
(11) Joyeau et al. reported the formation of ꢀ-lactams via the treatment
of 3-bromo-3-butenamides with copper metal (5 equiv) in DMF at 130-135
°C. See: Joyeau, R.; Kobaiter, R.; Sadet, J.; Wakselman, M. Tetrahedron
Lett. 1989, 30, 337.
4038
Org. Lett., Vol. 10, No. 18, 2008