Page 5 of 15
ACS Catalysis
(6) (a) Cherevatskaya, M.; Neumann, M.; Füldner, S.; Har-
idazolidinone 3 are quite poor catalyst for this reaction giving
low yields after prolonged reaction time (see SI published by
Melchiorre, ref. (10), for details).
(20) (a) Julià, L.; Bosch, M. P.; Rodriguez S.; Guerrero, A. J.
Org. Chem. 2000, 65, 5098-5103; (b) Mileo, E.; Benfatti, F.; Cozzi,
P.G.; Lucarini, M. Chem. Commun. 2009, 469-470.
(21) Zhang, J.; Campolo, D.; Dumur, F.; Xiao, P.; Fouassier, J.
P.; Gigmes, D.; Lalevée, J. J. Polym. Sci. A Polym. Chem. 2015, 53,
42-49.
(22) An iterative least squares fitting procedure based on the
systematic application of the Monte Carlo method was per-
formed in order to obtain the experimental spectral parameters
of the radical adducts. (a) Franchi, P.; Mezzina, E.; Lucarini, M. J.
Am. Chem. Soc. 2014, 136, 1250-1252; (b) Valgimigli, L.; Lucarini,
M.; Pedulli, G.F.; Ingold, K.U. J. Am. Chem. Soc. 1997, 119, 8095-
8096.
(23)The C-H bond dissociation energies in H-CH2COOEt and
H-CH(COOMe)2 are 96 and 90.5 kcal mol-1, respectively (Luo,
Y.-R. in “Bond Dissociation Energies in Organic Compounds”,
2003, CRC Press), p 67 and 68, respectively.
(24) For an important study concerning the off-on experi-
ments, and photochemical processes, see: Cismesia, M. A.; Yoon,
T. P. Chem. Sci. 2015; DOI: 10.1039/C5SC02185E.
1
2
3
4
5
6
7
8
lander, C.; Kümmel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.;
König, B. Angew. Chem. Int. Ed. 2012, 51, 4062-4066. (b) Riente,
P.; Mata Adams, A.; Albero, J.; Palomares, E.; Pericàs, M. A. An-
gew. Chem. Int. Ed. 2014, 53, 9613-9616.
(7) H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen,
K. Harms, M. Marsch, G. Hilt, E. Meggers, Nature 2014, 515, 100-
103.
(8) (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.;
Melchiorre, P. Nat. Chem. 2013, 5, 750-756. b) Arceo, E.;
Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5,
2438-2442.
(9) For the nucleophilicity of enamines, see: Mayr, H.;
Lakhdar, S.; Maji, B.; Ofial, A. R. Beil. J. Org. Chem. 2012, 8, 1458-
1578; and ref. therein.
(10) Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre,
P. J. Am. Chem. Soc. 2015, 137, 6120-6123.
(11) Kern, J.-M; Sauvage, J.-P. J. Chem. Soc. Chem. Commun.
1987, 546-548.
(12)For reviews on Cu photocatalysis in synthesis, see: Paria,
S.; Reiser, O. ChemCatChem 2014, 6, 2477-2483.
(13) Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Angew.
Chem. Int. Ed. 2015, 54, 6506-6510.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) (a) Creutz, C.; Chou, M.; Netzel, T. L.; Okumura, M.;
Sutin, N. J. Am. Chem. Soc. 1980, 102, 1309-1319; (b) Kober, E. M.;
Meyer, T. J. Inorg. Chem. 1983, 22, 1614-1616; (c) Juban, E. A.;
Smeigh, A. L.; Monat, J. E.; McCusker, J. K. Coord. Chem. Rev.
2006, 250, 1783-1791; (d) Bressler, C.; Milne, C.; Pham, V.-T.;
ElNahhas, A.; van der Veen, R. M.; Gawelda, W.; Johnson, S.;
Beaud, P.; Grolimund, D.; Kaiser, M.; Borca, C. N.; Ingold, G.;
Abela, R.; Chergui, M. Science 2009, 323, 489-492; f) Cannizzo,
A.; Milne, C. J.; Consani, C.; Gawelda, W.; Bressler, C.; Van
Mourik, F.; Chergui, M. Coord. Chem. Rev. 2010, 254, 2677-2686.
(15) (a) Ferrere, S. Chem. Mater. 2000, 12, 1083-1089; (b) Fer-
rere, S.; Gregg, B. A. J. Am. Chem. Soc. 1998, 120, 843-844.
(16) Kuhn, M.; Von Wartbung, A. Helv. Chim. Acta 1967, 50,
1546-1565.
(17) For precedent enantioselective synthesis of isodeoxy-
podophyllotoxin see: (a) Itoh, T.; Chika, J.; Takagi, Y.; Nishiyama,
S. J. Org. Chem. 1993, 58, 5717-5723; (b) Bode, J. W.; Doyle, M. P.;
Protopopova, M. N.; Zhou, Q.-L. J. Org. Chem. 1996, 61, 9146-
9155.
(18) For a photocatalytic approach to lactones, see: Welin, E.
R.; Warkentin, A. A.; Conrad, J. C.; MacMillan, D. W. C. Angew.
Chem. Int. Ed. 2015, 54, 9668-9672.
(25)We were unable to detect by ultrafast spectroscopy the
electron transfer quenching of the iron complex excited state in
the presence of enamine and bromomalonate at different con-
centrations. However, the uncertainty accompanying the ultra-
fast measurements, in particular in the sub-ps region (i.e., in the
time scale of the MLCT lifetime), suggests that the quenching
process takes place with a rather low efficiency (5% or even less).
For a detailed discussion, see SI.
(26)Ismaili, H.; Pitre, S. P.; Scaiano, J. C. Catl. Sci. Technol.
2013, 3, 935-937.
(27) An atom transfer mechanism, in which the α-aminoalkyl
radical is abstracting a bromine atom, has been also suggested as
key step for ruthenium catalyzed reaction, see ref 26. In this al-
ternative mechanism, the α-amidoalkyl radical after abstraction
of the bromine is forming a α-bromo amine adduct, that is de-
composed to the iminium ion pair.
(28) The [Fe(bpy)3]Br2 is not decomposed or oxidized during
the reaction. As possible steps for the reduction of Fe(III) to
Fe(II) we propose that the α-aminoalkyl radical produced after
the addition of the malonate, or the oxidation of sacrificial
enamine are the compelling reductants. For SOMO chemistry
performed with Fe polypyridyl complexes in which Fe(III) com-
plexes are used as stoichiometric oxidants of enamines, see:
Comito, R. J.; Finelli, F. G.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2013, 135, 9358-9361.
(19) Although enamines derived from Hayashi-Jørgensen cata-
lyst are able to promote the stereoselective alkylation reaction
with bromo-malonates (rif (10)) in absence of any photosensitiz-
ers, the less nucleophilic enamines derived from MacMillan im-
ACS Paragon Plus Environment