C O M M U N I C A T I O N S
anticipated, the reaction of 1a with 10 mol% of (S,S)-6 and 3 equiv of
n-BuLi provided silanol (R)-2a with an equal level of enantioselectivity
and chemical yield (53% ee, 86%) (entry 3). The developed approach
has been applied to a variety of silanols. As shown in Table 1, a similar
reaction of dialkoxysilanes 1a-c with various types R3Li provided
corresponding silanols in enantioenriched form.15,16 Especially, the
reaction of 1c with t-BuLi provided 2c with a relatively high
enantioselectivity (84% ee, 92%) (entry 8). In these reactions using
(S,S)-6, the bulkier substituents on silane 1 were positioned at R2 on
the major enantiomer of silyl ether 2.
Supporting Information Available: Experimental procedures and
spectral data. This material is available free of charge via the Internet
References
(1) For pioneering works on chiral silicon chemistry: (a) Kipping, F. S. J. Chem.
Soc. 1907, 23, 209. (b) Eaborn, C.; Pitt, C. Chem. Ind. 1958, 830. (c)
Sommer, L. H.; Frye, C. L. J. Am. Chem. Soc. 1959, 81, 1013. (d) Okaya,
Y.; Ashida, T. Acta Crystallogr. 1966, 20, 461.
(2) Selected reviews: (a) Sommer, L. H. Stereochemistry, Mechanism and
Silicon; McGraw-Hill: New York, 1965. (b) Corriu, R. J. P.; Gue´rin, C.;
Moreau, J. J. E. In Topics in Stereochemistry; Eliel, E. L., Ed.; Wiley:
New York, 1984; Vol. 15, pp 43-198. (c) Brook, M. A. Silicon in Organic,
Organometallic, and Polymer Chemistry; Wiley: New York, 2000; pp 115-
137. (d) Murafuji, T.; Kurotobi, K.; Nakamura, N.; Sugihara, Y. Curr. Org.
Chem. 2002, 6, 1469.
(3) For representative reports on diastereoselective synthesis of silicon
compounds: (a) Richter, W. J. J. Organomet. Chem. 1979, 169, 9. (b)
Kobayashi, K.; Kato, T.; Unno, M.; Masuda, S. Bull. Chem. Soc. Jpn. 1997,
70, 1393. (c) Kawachi, A.; Maeda, H.; Mitsudo, K.; Tamao, K. Organo-
metallics 1999, 18, 4530.
(4) For representative reports on enantioselective synthesis of silicon
compounds: (a) Corriu, R. J. P.; Moreau, J. J. E. Tetrahedron Lett. 1973,
14, 4469. (b) Hayashi, T.; Yamamoto, K.; Kumada, M. Tetrahedron Lett.
1974, 15, 331. (c) Djerourou, A. H.; Blanco, L. Tetrahedron Lett. 1991,
32, 6325. (d) Ohta, T.; Ito, M.; Tsuneto, A.; Takaya, H. J. Chem. Soc.,
Chem. Commun. 1994, 2525.
(5) For recent reports on chiral silicon chemistry: (a) Omote, M.; Tokita, T.;
Shimizu, Y.; Imae, I.; Shirakawa, E.; Kawakami, Y. J. Organomet. Chem.
2000, 611, 20. (b) Tacke, R.; Kornek, T.; Heinrich, T.; Burschka, C.; Penka,
M.; Pulm, M.; Keim, C.; Mutschler, E.; Lambrecht, G. J. Organomet. Chem.
2001, 640, 140. (c) Trzoss, M.; Shao, J.; Bienz, S. Tetrahedron 2002, 58,
5885. (d) Kawakami, Y.; Park, S. Y.; Uenishi, K.; Oishi, M.; Imae, I. Polym.
Int. 2003, 52, 1619. (e) Oestreich, M.; Rendler, S. Angew. Chem., Int. Ed.
2005, 44, 1661. (f) Rendler, S.; Auer, G.; Keller, M.; Oestreich, M. AdV.
Synth. Catal. 2006, 348, 1171.
To clarify the steric course of the present substitution reaction, we
conducted the computational analysis of the reaction of simplified silane
1d (R1, R2 ) Me) with MeLi by using DFT calculations.17,18 The
result of the DFT calculations revealed that the feasible reaction
pathway is a retention process involving apical attack and apical
departure (Figure 1). In the first step, a complex i, which is composed
of MeLi and 1d, engages in the C-Si bond formation via transition
state ii (+8.5 kcal mol-1) wherein the methyl anion and O2 are in the
apical positions of the trigonal bipyramidal structure; thus, a five-
coordinated silicate iii is formed. In the second step, iii converts to
product v over an energy barrier (transition state iv: +10.7 kcal mol-1
)
accompanied by a pseudorotation and elimination of the lithium
coordinating oxygen (O1) from an apical position.
(6) (a) Tacke, R.; Strecker, M.; Lambrecht, G.; Moser, U.; Mutschler, E. Liebigs
Ann. Chem. 1983, 922. (b) Tacke, R.; Linoh, H.; Ernst, L.; Moser, U.;
Mutschler, E.; Sarge, S.; Cammenga, H. K.; Lambrecht, G. Chem. Ber.
1987, 120, 1229. (c) Yamamoto, K.; Kawanami, Y.; Miyazawa, M. J. Chem.
Soc., Chem. Commun. 1993, 436. (d) Adam, W.; Mitchell, C. M.; Saha-
Moeller, C. R.; Weichold, O. J. Am. Chem. Soc. 1999, 121, 2097. (e) Mori,
A.; Toriyama, F.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.; Hiyama, T.
Chem. Lett. 1999, 549. (f) Schmid, T.; Daiss, J. O.; Ilg, R.; Surburg, H.;
Tacke, R. Organometallics 2003, 22, 4343.
Figure 1. Potential energy surface for nucleophilic substitution reaction
of cyclic silane 1d (R1, R2 ) Me) and MeLi. Relative zero-point energies
(∆E0) were calculated at the B3LYP/6-311+G(d) level of theory.
(7) (a) Tomooka, K.; Nakazaki, A.; Nakai, T. J. Am. Chem. Soc. 2000, 122,
408. (b) Nakazaki, A.; Usuki, J.; Tomooka, K. Synlett 2008, 2064.
(8) Corriu, R.; Boyer, J.; Perz, R. C. R. Acad. Sci. 1988, 307, 1351.
(9) For representative reports on asymmetric reactions using 6 with organo-
lithium reagent: (a) Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C. J. Am.
Chem. Soc. 1994, 116, 8797. (b) Hodgson, D. M.; Lee, G. P. Tetrahedron:
Asymmetry 1997, 8, 2303. (c) Tomooka, K.; Komine, N.; Nakai, T.
Tetrahedron Lett. 1998, 39, 5513. (d) Tomooka, K.; Yamamoto, K.; Nakai,
T. Angew. Chem., Int. Ed. 1999, 38, 3741.
To gain the insight into the enantioselectivity, we calculated the
transition structures of the first nucleophilic attack step in the reaction
of dialkoxysilane 1a with the MeLi-(S,S)-6 complex and obtained the
lowest energy geometries vi and vii for (R)-2b and (S)-2b, respec-
tively.18,19 The calculated energy of vi is lower than that of vii (∆E )
2.5 kcal/mol), which is in good agreement with the experimentally
observed enantioselectivity. The disadvantage of transition structure
vii is due to the severe steric repulsion between the i-Pr group of (S,S)-6
and t-Bu group of 1a.
(10) Silyl ether 2a was obtained in racemic form when reaction was performed
in THF.
(11) Similar reactions using (-)-sparteine or other chiral bisoxazolines, which
have Me, i-Bu, or t-Bu substituents at N-R-positions on oxazoline rings,
gave 2a in 2%-39% ee.
(12) Silanol 5 is stereochemically stable under standard operation. In sharp
contrast, Tacke and colleagues have reported a rapid racemization of
enantioenriched silanol having ꢀ-amino functionality. The stereochemical
instability of Tacke’s silanol can be attributed to an intramolecular
coordination of the amino group to the silicon; see ref 6b.
(13) Nakazaki, A.; Nakai, T.; Tomooka, K. Angew. Chem., Int. Ed. 2006, 45,
2235.
(14) Absolute stereochemistries of 7 and 9 were determined by X-ray analysis;
see refs 7 and 13.
(15) Absolute stereochemistry of (+)-5b was determined as the R form by
derivatization of 2b to reported hydrosilane: Jankowski, P.; Schaumann,
E.; Wicha, J.; Zarecki, A.; Adiwidjaja, G. Tetrahedron: Asymmetry 1999,
10, 519; see Supporting Information.
(16) Absolute stereochemistry of (+)-5c was determined as the S form via
preparation of authentic sample of (S)-5c from (R)-5b; see Supporting
Information.
(17) Fundamental theoretical study of nucleophilic substitution at silicon was
reported by Holmes et al. : (a) Deiters, J. A.; Holmes, R. R. J. Am. Chem.
Soc. 1987, 109, 1686. (b) Deiters, J. A.; Holmes, R. R. J. Am. Chem. Soc.
1987, 109, 1692.
(18) All calculations were performed with Gaussian 03 on a TSUBAME system
at Tokyo Institute of Technology; see Supporting Information for details.
(19) The calculations were performed at the B3LYP/6-311+G(d)//HF/3-21G
level of theory.
We have described the first example of an enantioselective synthesis
of silanol. The produced enantioenriched silanols can be used as a
sila-chiral building block for various chiral organosilicon compounds.
Thus, this work opens a new chapter for chiral organosilicon chemistry.
Further work and study for the utilization of enantioenriched silanols
is underway.
Acknowledgment. This research was supported in part by a
Grant-in-Aid for Scientific Research (B) No. 19350019 and Global
COE Program (Kyushu Univ.) from MEXT, Japan.
JA805848Z
9
J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008 16133