ORGANIC
LETTERS
2005
Vol. 7, No. 17
3649-3651
Highly Chemoselective Addition of
Amines to Epoxides in Water
Najmodin Azizi and Mohammad R. Saidi*
Department of Chemistry, Sharif UniVersity of Technology, P.O. Box 11465-9516,
Tehran, Iran
Received May 24, 2005
ABSTRACT
Aminolysis of a variety of epoxides by aliphatic and aromatic amines in water, in the absence of any catalyst with high yields, is reported.
-Amino alcohols were formed under mild conditions with high selectivity and in excellent yields.
â
â-Amino alcohols are important organic compounds of
considerable use in medicinal chemistry, amino acids, and
chiral auxiliaries.1 One of the most practical and widely used
routes for the synthesis of these compounds is the direct
aminolysis of epoxides at elevated temperature with an
excess of amine.2 Recently, several methods using promoters
or catalysts in different organic solvents3 have been reported.
These include supercritical carbon dioxide (scCO2),4a mi-
crowave irradiation,4b hexafluoro-2-propanol,4c ionic liquid,4d
Bi(OTf)3 in water,4e and solvent-free conditions.4f,g
However, there are some limitations with these method-
ologies such as elevated temperatures, use of stoichiometric
or moisture-sensitive catalyst, and hazardous organic sol-
vents. By contrast, there is no report of the aminolysis of
epoxides in water without using any catalyst.4e
The preparation of â-amino alcohols in water is desirable,
since using water instead of an organic solvents has become
more important due to environmental considerations in recent
years.5
Herein, we wish to report the ring-opening of epoxides
with a variety of amines in water at room temperature.6
Treatment of epoxide 1 with 1.2 equiv of amine 2 resulted
in formation of the â-amino alcohol 3. The reactions were
(3) (a) Chini, M.; Crotti, P.; Macchia, F. Tetrahedron Lett. 1990, 31,
4661-4664. (b) Yamamoto, Y.; Asao, N.; Meguro, M.; Tsukade, N.;
Nemoto, H.; Adayari, N.; Wilson, J. G.; Nakamura, H. J. Chem. Soc., Chem.
Commun. 1993, 1201-1203. (c) Meguro, M.; Asao, N.; Yamamoto, Y. J.
Chem. Soc., Perkin Trans. 1 1994, 2597-2601. (d) Sekar, G.; Singh, V.
K. J. Org. Chem. 1999, 64, 287-289. (e) Sagava, S.; Abe, H.; Hase, Y.;
Inaba, T. J. Org. Chem. 1999, 64, 4962-4965. (f) Curini, M.; Epifano, F.;
Marcotullio, M. C.; Rosati, O. Eur. J. Org. Chem. 2001, 4149-4152. (g)
Fagnou, K.; Lautens, M. Org. Lett. 2000, 2, 2319-2321. (h) Pacho’n, L.
D.; Gamez, P.; van Bassel, J. J. M.; Reedijk, J. Tetrahedron Lett. 2003,
44, 6025-6027. (i) Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett.
2003, 44, 8315-8319. (j) Zhao, P.-Q.; Xu, L.-W.; Xia, C.-G. Synlett 2004,
846-850. (k) Fan, R.-H.; Hou, X.-L. J. Org. Chem. 2003, 68, 726-730.
(l) Kamal, A.; Ramu, R.; Amerudin Azhar, M.; Ramesh Khanna, G. B.
Tetrahedron Lett. 2005, 46, 2675-2677. (m) Carree, F.; Gil, R.; Collin, J.
Tetrahedron Lett. 2004, 45, 7749-7751. (n) Sundrarajan, G.; Vijayakrishna,
K.; Varghese, B. Tetrahedron Lett. 2004, 45, 8253-8256. (o) Rodriquez,
J. R.; Navarro, A. Tetrahedron Lett. 2004, 45, 7495-7498.
(1) (a) Ager, D. J.; Prakash I.; Schaad, D. R. Chem. ReV. 1996, 96, 835-
876. (b) Bonini, C.; Righi, G. Synthesis 1994, 225-238. (c) Gehlert, D.
R.; Goldstein, D. J.; Hipskind, P. A. Ann. Rep. Med. Chem. 1999, 201-
210. (d) Corey, E. J.; Zhang, F. Angew. Chem., Int. Ed. 1999, 38, 1931-
1934. (e) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda,
A. H. J. Am. Chem. Soc. 1998, 120, 8340-8347. (f) Chng, B. L.; Ganesan,
A. Bioorg. Med. Chem. Lett. 1997, 7, 1511-1514. (g) Bloom, J. D.; Dutia,
M. D.; Johnson, B. D.; Wissner, A.; Burns, M. G.; Largis, E. E.; Dolan, J.
A.; Claus, T. H. J. Med. Chem. 1992, 35, 3081-3084. (h) O’Brien, P.
Angew. Chem., Int. Ed. 1999, 38, 326-329. (i) Li, G.; Chang, H.-T.;
Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 451-454.
(2) (a) Hodgson, D. M.; Gibbs, A. R.; Lee, G. P. Tetrahedron 1996, 52,
14361-14384. (b) Hanson, R. M. Chem. ReV. 1991, 91, 437-475. (c)
ComprehensiVe Organic Synthesis; Mitsunobu, O., Winterfeldt, E., Ed.;
Pergamon: New York, 1996; Vol. 6, Part 1.3.4.1. (d) Crooks, P. A.;
Szyudler, R. Chem. Ind. (London) 1973, 1111-1112. (e) Deyrup, J. A.;
Moyer, C. L. J. Org. Chem. 1969, 34, 175-179. (f) Freifelder, M.; Stone,
G. R. J. Org. Chem. 1961, 26, 1477-1480. (g) Mousseron, M.; Jullien, J.;
Jolchine, Y. Bull. Soc. Chim. Fr. 1952, 757-766. (h) Lutz, R. E.; Freekand,
J. A.; Murphy, R. S. J. Am. Chem. Soc., 1948, 70, 2015-2023.
(4) (a) Surendra, K.; Krishnaveni, N. S.; Rao, K. R. Synlett 2005, 506-
510. (b) Mojtahedi, M. M.; Saidi, M. R.; Bolourtchian, M. J. Chem. Res.,
Synop. 1999, 128-129. (c) Das, U.; Crousse, B.; Kesavan, V.; Bonnet-
Delpon, D.; Be’gue’, J.-P. J. Org. Chem. 2000, 65, 6749-6751. (d) Yadav,
J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Tetrahedron Lett.
2003, 44, 1047-1050. (e) Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett.
2004, 45, 49-52. (f) Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett.
2003, 44, 8315-8319. (g) Chakraborti, A. K.; Rudrawar, S.; Kondaskar,
A. Org. Biomol. Chem. 2004, 2, 1277-1280.
(5) Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic
and Professional: London, 1998. Li, C. J.; Chang, T. H. In Organic
Reactions in Aqueous Media; Wiley: New York, 1997.
10.1021/ol051220q CCC: $30.25
© 2005 American Chemical Society
Published on Web 07/28/2005