Scheme 1
.
Synthesis of Enantiopure R-Tfm-Amino Acids from
Allylmorpholinone 1
Scheme 2. Multigram-Scale Synthesis of Allylmorpholinone 1
According to our previously reported three-step proce-
dure,4,6 an improved efficient multigram-scale synthesis of
a 75:25 diastereomeric mixture of (R,S)-1 and (R,R)-1 was
achieved (Scheme 2). The (R,S) configuration of the major
1 diastereomer was assigned according to our previous
communication.4
synthesis of ring-substituted R-Tfm-prolines, we are now
interested in the synthesis of enantiopure 3,4-dihydroxy-R-
Tfm-prolines. Because of their potential as azasugar ana-
logues and in peptide synthesis, numerous syntheses of 3,4-
dihydroxyprolines are reported in the literature5 but none in
the fluorinated series. We report here an efficient stereose-
lective synthesis of 3,4-dihydroxy-R-Tfm-proline, as well as
an improved synthesis of enantiopure R-Tfm-prolines using
the same chiral Tfm-allylmorpholinones intermediate.
We recently reported that the allylic lactone 1 (Scheme
1) obtained from (R)-phenylglycinol and ethyl trifluoropy-
ruvate was a multipotent intermediate for the synthesis of
various R-Tfm amino acids such as R-Tfm-allylglycine,
R-Tfm-norvaline, R-Tfm-proline,4 and R-Tfm-pyroglutamic
acids.6 Both enantiomers of the cyclic R-Tfm-proline were
obtained from 9-BBN hydroboration reaction of 1 followed
by H2O2 oxidation and cyclization of the corresponding
alcohols. However, this pathway is not suitable for the
multigram-scale synthesis of R-Tfm-proline. As we are
interested in the development of scalable methods for the
synthesis of enantiopure cyclic R-Tfm amino acids, we
decided to explore the scope of the iodocyclization7 reaction
of the allylic lactone 1.
Table 1. Iodocylization of 1
I2
product
(yield %)a
entry
conditions
(equiv)
1
2
3
4
5
6
THF/Et2O/satd NaHCO3
CH3CN (wet)/ K2CO3
CH2Cl2/Na2CO3·5H2O
CH2Cl2/K2CO3
CH2Cl2
toluene
2.5
3.3
3.3
2.8
2.6
1.5
low conversion
low conversion
2 (40),b 3 (22),c 4 (38)d
2 (32),b 3 (40),c 4 (5)d
2 (87)b
2 (71)b
a Isolated yield. b Four diastereomers. c One diastereomer. d Two
diastereomers.
(4) Chaume, G.; Van Severen, M.-C.; Marinkovic, S.; Brigaud, T. Org.
Lett. 2006, 8, 6123–6126.
(5) (a) Angle, S. R.; Bensa, D.; Belanger, D. S. J. Org. Chem. 2007,
72, 5592–5597. (b) Davis, F. A.; Ramachandar, T.; Chai, J.; Skucas, E.
Tetrahedron Lett. 2006, 47, 2743–2746. (c) Taylor, C. M.; Jones, C. E.;
Bopp, K. Tetrahedron 2005, 61, 9611–9617. (d) Taylor, C. M.; Hardre´,
R.; Edwards, P. J. B. J. Org. Chem. 2005, 70, 1306–1315. (e) Taylor, C. M.;
Barker, W. D.; Weir, C. A.; Park, J. H. J. Org. Chem. 2002, 67, 4466–
4474. (f) Mart´ın, R.; Alco´n, M.; Perica`s, M. A.; Riera, A. J. Org. Chem.
2002, 67, 6896–6901. (g) Weir, C. A.; Taylor, C. M. J. Org. Chem. 1999,
64, 1554–1558. (h) Zanardi, F.; Battistini, L.; Nespi, M.; Rassu, G.; Spanu,
P.; Cornia, M.; Casiraghi, G. Tetrahedron: Asymmetry 1996, 7, 1167–1180.
(i) Schumacher, K. K.; Jiang, J.; Joullie´, M. M. Tetrahedron: Asymmetry
1998, 9, 47–53.
The iodocyclization reaction was first attempted in basic
conditions following known procedures reported in the
literature for similar substrates (Table 1). The reaction in
THF/Et2O/H2O mixture with NaHCO3 as the base8 or in wet
9
CH3CN in the presence of K2CO3 afforded only very low
conversion of the starting allylic compound (entries 1 and
2). The conversion of 1 was complete with Na2CO3·5H2O
in refluxing CH2Cl2,10 but 5 days reaction time was required
and a mixture of five-membered ring compounds 2 (40%),
four-membered ring compounds 3 (22%), and five-membered
(6) Chaume, G.; Van Severen, M.-C.; Ricard, L.; Brigaud, T. J. Fluorine
Chem. 2008, 129, 1104–1109.
(7) For reviews and recent examples of iodocyclization reactions, see:
(a) Togo, H.; Iida, S. Synlett 2006, 2159–2175. (b) Amjad, M.; Knight, D.
Tetrahedron Lett. 2006, 47, 2825–2828. (c) Diaba, F.; Puigbo´, G.; Bonjoch,
J. Eur. J. Org. Chem. 2007, 3038–3044. (d) Bonjoch, J.; Diaba, F.; Puigbo´,
G.; Peidro´, E.; Sole´, D. Tetrahedron Lett. 2003, 44, 8387–8390. (e)
Donohoe, T. J.; Sintim, H. O.; Hollinshead, J. J. Org. Chem. 2005, 70,
7297–7304. (f) Kim, J. H.; Curtis-Long, M. J.; Seo, W. D.; Lee, J. H.; Lee,
B. W.; Yoon, Y. J.; Kang, K. Y.; Park, K. H. Bioorg. Med. Chem. Lett.
2005, 15, 4282–4285.
(8) Kim, J. H.; Curtis-Long, M. J.; Seo, W. D.; Ryu, Y. B.; Yang, M. S.;
Park, K. H. J. Org. Chem. 2005, 70, 4082–4087.
(9) Davis, F. A.; Song, M.; Augustine, A. J. Org. Chem. 2006, 71, 2779–
2786.
(10) Be´gue´, J.-P.; Bonnet-Delpon, D.; Dogbeavou, R.; Oure´vitch, M.
J. Chem. Soc., Perkin Trans. 1993, 2787–2791.
210
Org. Lett., Vol. 11, No. 1, 2009