K. Janda, J. Am. Chem. Soc., 1998, 120, 2211–2217; (b) K. M. Shokat,
M. K. Ko, T. S. Scanlan, L. Kochersperger, S. Yonkovich,
S. Thaisrivongs and P. G. Schultz, Angew. Chem., Int. Ed. Engl.,
1990, 29, 1296–1303; (c) J. D. Stewart and S. J. Benkovich, Nature,
1995, 375, 388–391; (d) Y. Xu, N. Yamamoto and K. D. Janda,
Bioorg. Med. Chem., 2004, 12, 5247–5268.
Notes and references
1 R. E. W. Hancock, Nat. Rev. Drug Discovery, 2007, 6, 28.
2 L. Cegelski, G. R. Marshall, G. R. Eldridge and S. J. Hultgren,
Nat. Rev. Microbiol., 2008, 6, 17–27.
3 A. Marra, Expert Rev. Anti-Infective Ther., 2004, 2, 61–72.
4 F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand and
D. Habich, Angew. Chem., Int. Ed., 2006, 45, 5072–5129.
5 S. Everts, Chem. Eng. News, 2006, 84, 17–26.
6 (a) F. A. A. Amer, E. M. El-Behedy and H. A. Mohtady,
Biotechnol. Mol. Biol. Rev., 2008, 3, 46–57; (b) M. Henzer, H. Wu,
J. B. Andersen, K. Riedel, T. B. Rasmussen, N. Bagge, N.
Kumar, M. A. Schembri, Z. Song, P. Kristoffersen, M.
Manefield, J. W. Costerton, S. Molin, L. Eberl, P. Steinberg,
S. Kjelleberg, N. Hoiby and M. Givskov, EMBO J., 2003, 22, 3803.
7 (a) W. C. Fuqua, S. C. Winans and E. P. Greenberg, J. Bacteriol.,
1994, 176, 269–275; (b) B. L. Bassler and R. Losick, Cell, 2006, 125,
237–246; (c) C. Fuqua, M. R. Parsek and E. P. Greenberg, Annu.
Rev. Genet., 2001, 35, 439.
20 AHL lactone ring hydrolysis by the lactonase from Bacillus
thuringiensis is thought to proceed through a tetrahedral transition
state: D. L. Liu, B. W. Lepore, G. A. Petsko, P. W. Thomas,
E. M. Stone, W. Fast and D. Ringe, Proc. Natl. Acad. Sci. U. S. A.,
2005, 102, 11882–11887.
21 M. M. Mader and P. A. Bartlett, Chem. Rev., 1997, 97, 1281–1301.
22 V. Gouverneur and M. Reiter, Adv. Org. Synth., 2005, 1, 519–540.
23 Sulfones have been used as haptens in other contexts:
(a) F. Benedetti, F. Berti, A. Colombatti, C. Ebert, P. Linda and
F. Tonizzo, Chem. Commun., 1996, 1417–1418; (b) G. Zhong,
R. A. Lerner and C. F. Barbas III, Angew. Chem., Int. Ed., 1999,
38, 3738–3741. The use of sulfonamides as transition-state ana-
logues has previously been reported, see for example; (c) E. Cama,
H. Shin and D. W. Christianson, J. Am. Chem. Soc., 2003, 125,
13052–13057; (d) J. L. Radkiewicz, M. A. McAllister, E. Goldstein
and K. N. Houk, J. Org. Chem., 1998, 63, 1419–1428.
8 T. B. Rasmussen and M. Givskov, Microbiology (Reading, U. K.),
2006, 152, 895–904.
9 H. Suga and K. M. Smith, Curr. Opin. Chem. Biol., 2003, 7,
586–591.
24 The aim of using the biotin ‘tag’ was as a means of immobilization of
the compound onto streptavidin-coated phage tubes for the purposes
of phage library screening; see D. J. Schofield, A. R. Pope,
V. Clementel, J. Buckell, S. D. J. Chapple, K. F. Clarke,
J. S. Conquer, A. M. Crofts, S. R. E. Crowther, M. R. Dyson,
G. Flack, G. J. Griffin, Y. Hooks, W. J. Howat, A. Kolb-Kokocinski,
S. Kunze, C. D. Martin, G. L. Maslen, J. N. Mitchell, M. O’Sullivan,
R. L. Perera, W. Roake, S. P. Shadbolt, K. J. Vincent, A. Warford,
W. E. Wilson, J. Xie, J. L. Young and J. McCafferty, Genome Biol.,
2007, 8, R254.
25 Preliminary work established that catalytic hydrogenation of the
azide group in 2-azidotetrahydrothiophene 3 was not possible
presumably due to catalyst poisoning, Attempts to reduce 4
led to substrate decomposition due to the elimination of sulfur
dioxide.
10 For recent discussions see: (a) G. D. Geske, J. C. O’eill and
H. E. Blackwell, Chem. Soc. Rev., 2008, 37, 1432–1447;
(b) L. Hall-Stoodley, J. W. Costerton and P. Stoodley, Nat. Rev.
Microbiol., 2004, 2, 95–108; (c) J. T. Hodgkinson, M. Welch and
D. R. Spring, ACS Chem. Biol., 2007, 2, 715–717.
11 D. M. Roche, J. T. Byers, D. S. Smith, F. G. Glansdorp,
D. R. Spring and M. Welch, Microbiology (Reading, U. K.),
2004, 150, 2023–2028.
12 (a) S. Y. Park, H. O. Kang, H. S. Jang, J. K. Lee, B. T. Koo and
D. Y. Yum, Appl. Environ. Microbiol., 2005, 71, 2632–2641;
(b) Y. H. Lin, J. L. Xu, J. Y. Hu, L. H. Wang, S. L. Ong,
J. R. Leadbetter and L. H. Zhang, Mol. Microbiol., 2003, 47, 849–860.
13 (a) G. F. Kaufmann, J. Park, J. M. Mee, R. J. Ulevitch and
K. D. Janda, Mol. Immunol., 2008, 45, 2710–2714; (b) K. Charlton,
A. Porter and L. Thornthwaite, Methods for reducing biofilm
formation by infectious bacteria, PCT Int. Appl. WO/2005/
111080, 2005.
14 For recent selected examples see: (a) G. D. Geske, R. J. Wezeman,
A. P. Siegel and H. E. Blackwell, J. Am. Chem. Soc., 2005, 127,
12762–12763; (b) T. Persson, T. H. Hansen, T. B. Rasmussen,
M. E. Skinderso, M. Givskov and J. Nielsen, Org. Biomol. Chem.,
2005, 3, 253–262; (c) L. Y. W. Lee, T. Hupfield, R. L. Nicholson,
J. T. Hodgkinson, X. B. Su, G. L. Thomas, G. P. C.
Salmond, M. Welch and D. R. Spring, Mol. BioSyst., 2008, 4,
505–507.
15 (a) Y. H. Lin, J. L. Xu, J. Hu, L. H. Wang, S. L.
Ong, J. R. Leadbetter and L. H. Zhang, Mol. Microbiol.,
2003, 47, 849–860; (b) Y. H. Dong, J. L. Xu, X. Z. Li and
L. H. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 3526–3531.
16 J. F. Teiber, S. Horke, D. C. Haines, P. K. Chowdhary, J. Xiao,
G. L. Kramer, R. W. Haley and D. I. Draganov, Infect. Immun.,
2008, 76, 2512–2519.
17 For a discussion of the concept of antibody catalysis in general see:
(a) P. G. Schultz, Angew. Chem., Int. Ed. Engl., 1989, 28,
1283–1295; (b) K. D. Janda, Pure Appl. Chem., 1994, 66,
703–708.
18 S. D. Marin, Y. Xu, M. M. Meijler and K. D. Janda, Bioorg. Med.
Chem. Lett., 2007, 17, 1549–1552. In this important publication an
antibody (Mab XYD-11G2) was raised against a squarene mono-
ester, which was not intended to be a transition-state analogue for
AHL hydrolysis, but rather, a paraoxon analogue for reactive
immunization.
26 (a) E. Saxon, J. I. Armstrong and C. R. Bertozzi, Org. Lett., 2000,
2, 2141–2143; (b) M. Kohn and R. Breinbauer, Angew. Chem., Int.
Ed., 2004, 43, 3106–3116.
27 I. W. J. Still, W. L. Brown, R. J. Colville and G. W. Kutney, Can.
J. Chem., 1984, 62, 586–590.
28 A. Shaabani, P. Mirzaei, S. Naderi and D. G. Lee, Tetrahedron,
2004, 60, 11415–11420.
29 (a) Y. H. Dong, L. H. Wang, J. L. Xu, H. B. Zhang, X. F. Zhang
and L. H. Zhang, Nature, 2001, 411, 813–817; (b) Y. H. Dong,
J. L. Xu, X. Z. Li and L. H. Zhang, Proc. Natl. Acad. Sci. U. S. A.,
2000, 97, 3526–3531; (c) D. Liu, J. Momb, P. W. Thomas,
A. Moulin, G. A. Petsko, W. Fast and D. Ringe, Biochemistry,
2008, 47, 7706–7714; (d) L. H. Wang, L. X. Weng, Y. H. Dong and
L. H. Zhang, J. Biol. Chem., 2004, 279, 13645–13651;
(e) P. W. Thomas, E. M. Stone, A. L. Costello, D. L. Tierney
and W. Fast, Biochemistry, 2005, 44, 7559–7569.
30 Previous reports on antibody-catalyzed quorum quenching (see
ref. 16) have employed a hybridoma approach for antibody
production. The use of haptens to select for antibodies from an
antibody phage display library has several advantages over the
hybridoma method (see P. Wentworth, Science, 2002, 296,
2247–2249). Most significantly, the use of a phage display antibody
library derived from a cloned human immune repertoire allows the
generation of human catalytic antibodies, which are more suitable
for human therapeutic applications than monoclonal antibodies of
animal origin (see H. Dorsam, M. Braunagel, C. Kleist, D. Moynet
and M. Welchsof, in The Protein Protocols Handbook, ed.
J. M. Walker, Springer-Verlag, New York, LLC, 2nd edn, 2002,
pp. 1073–1082).
19 For a discussion of transition-state analogues and catalytic antibodies
see: (a) C. Gao, B. J. Lavey, C. L. Lo, A. Datta, P. Wentworth, Jr and
ꢀc
This journal is The Royal Society of Chemistry 2009
540 | Chem. Commun., 2009, 538–540