836
Y. Li et al. / Bioorg. Med. Chem. Lett. 19 (2009) 834–836
Table 1
This paper outlined the discovery of [1,2,4]triazolo[3,4-
[1,2,4]Triazolo[3,4-f][1,6]naphthyridine series SARa
f][1,6]naphthyridine inhibitors of Akt. Introduction of the tricyclic
structure significantly improved Akt2 intrinsic and cellular activi-
ties which led to the improved inhibition of Akt1 and Akt2 in a
mouse model.
N
N
N
N
NH
N
N
R
Ph
N
N
Acknowledgment
We thank Drs. Mark T. Bilodeau and Philip E. Sanderson, Mrs.
John C. Hartnett and Ahren I. Green for careful reading of this
manuscript.
R
Akt1 IC50
(nM)
Akt2 IC50
(nM)
Cell Akt1 EC50 Cell Akt2 EC50
(nM)
(nM)
H2N
HO
9
2.8
2.6
9.4
18.1
47.7
References and notes
10
11
12
13
14
15
6.7
10.4
24.1
10.0
14.6
10.5
27.0
17.0
167.7
107.6
1. (a) Cantley, L. C. Science 2002, 296, 1655; (b) Vivanco, I.; Sawyers, C. L. Nat. Rev.
Cancer 2002, 2, 489; (c) Hennessy, B. T.; Smith, D. L.; Ram, R. T.; Yiling, L.; Milla,
G. B. Nat. Rev. Drug Disc. 2005, 4, 989; (d) Cully, M.; You, H.; Levine, A. J.; Mak, T.
W. Nat. Rev. Cancer 2006, 6, 184.
2. (a) Li, J.; Simpson, L.; Takahashi, M.; Miliaresis, C.; Myers, M. P.; Tonks, N.;
Parsons, R. Cancer Res. 1998, 58, 5667; (b) Karakas, B.; Bachman, K. E.; Park, B.
H. Br. J. Cancer 2006, 94, 455; (c) Hynes, N. E.; Lane, H. A. Nat. Rev. Cancer 2005,
5, 341; (d) Engelman, J. A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.;
Park, J. O.; Lindeman, N.; Gale, C. M.; Zhao, X.; Christensen, J.; Kosaka, T.;
Holmes, A. J.; Rogers, A. M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B. E.;
Cantley, L. C.; Janne, P. A. Science 2007, 316, 1039.
HS
10.0
8.5
H
H2N
N
265.5
5.0
1213
O
H
4.0
41.0
176.5
483.3
H3C
ClH2C
4.6
24.6
113.5
3. (a) Hennessy, B. T.; Smith, D. L.; Ram, P. T.; Lu, Y.; Mills, G. B. Nat. Rev. Drug
Discov. 2005, 988; (b) Lindsley, C. W.; Barnett, S. F.; Yaroschak, M.; Bilodeau, M.
T.; Layton, M. E. Curr. Top. Med. Chem. 2007, 1349.
26.7
N
4. (a) Chan, T. O.; Rittenhouse, S. E.; TSichilis, P. N. An Rev. Biochem. 1999, 68, 965;
(b) Barnett, S. F.; Bilodeau, M. T.; Lindsley, C. W. Curr. Top. Med. Chem. 2005, 5,
109; (c) Page, C.; Lin, J. J.; Jin, Y.; Castle, V. P.; Nunez, G.; Huang, M.; Lin, J. Y.
Anticaner Res. 2000, 20, 407; (d) Laine, J.; Kunstle, G.; Obata, T.; Noguchi, M. J.
Biol. Chem. 2002, 277, 3743.
16
17
9.9
55.1
62.5
376.1
N
H3C
OH
N
17.0
77.9
41.8
251.4
5. (a) Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-
Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E.
Bioorg. Med. Chem. Lett. 2005, 15, 761; (b) Zhao, Z.; Leister, W. H.; Robinson, R.
G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber,
H. E.; Duggan, M. E.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2005, 15, 905; (c)
Zhao, Z.; Robinson, R. G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G.
D.; Huber, H. E.; Duggan, M. E.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18,
49; (d) Wu, Z.; Hartnett, J. C.; Neilson, L. A.; Robinson, R. G.; Fu, S.; Barnett, S. F.;
Defeo-Jones, D.; Jones, R. E.; Kral, A. M.; Huber, H. E.; Hartman, G. D.; Bilodeau,
M. T. Bioorg. Med. Chem. Lett. 2008, 18, 1274; (e) Wu, Z.; Robinson, R. G.; Fu, S.;
Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Kral, A. M.; Huber, H. E.; Kohl, N. E.;
Hartman, G. D.; Bilodeau, M. T. Bioorg. Med. Chem. Lett. 2008, 18, 2211; (f) Siu,
T.; Liang, J.; Arruda, J.; Li, Y.; Jones, R. E.; Defeo-Jones, D.; Barnett, S. F.;
Robinson, R. E. Bioorg. Med. Chem. Lett. 2008, 18, 4186; (g) Siu, T.; Liang, J.;
Arruda, J.; Li, Y.; Jones, R. E.; Defeo-Jones, D.; Barnett, S. F.; Robinson, R. G.
Bioorg. Med. Chem. Lett. 2008, 18, 4186; (h) Siu, T.; Li, Y.; Nagasawa, J.; Liang, J.;
Tehrani, L.; Chua, P.; Jones, R. E.; Defeo-Jones, D.; Barnett, S. F.; Robinson, R. G.
Bioorg. Med. Chem. Lett. 2008, 18, 4191.
H
Average of at least two measurements; enzyme protocol.8,9 All compounds
>50,000 nM versus PKA, PKC, SGK.
a
N
Akt1 IC50 = 2.8 nM
Akt2 IC50 = 9.4 nM
Cell Akt1 IC50 = 18.1 nM
Cell Akt2 IC50 = 47.7 nM
N
N
N
NH
N
N
N
H2N
N
N
9
N
Akt1 IC50 = 3.3 nM
Akt2 IC50 = 2.8 nM
Cell Akt1 IC50 = 18.3 nM
Cell Akt2 IC50 = 74.8 nM
N
N
N
H2N
6. (a) Hartnett, J. C.; Barnett, S. F.; Bilodeau, M. T.; Defeo-Jones, D.; Hartman, G. D.;
Huber, H. E.; Jones, R. E.; Kral, A. M.; Robinson, R. G.; Wu, Z. Bioorg. Med. Chem.
Lett. 2008, 18, 2194; (b) Bilodeau, M. T.; Balitza, A. E.; Hoffman, J. M.; Manley, P.
J.; Barnett, S. F.; Haskell, K.; Defeo-Jones, D.; Leander, k.; Jones, R. E.; Robinson,
R. G.; Smith, A. M.; Huber, H. E.; Hartman, G. D. Bioorg. Med. Chem. Lett. 2008,
18, 3178.
N
N
N
18
Figure 2. 2-Pyridyl end group modification.
7. Wu, Y.-Q.; Hamilton, S. K.; Wilkinson, D. E.; Hamilton, G. S. J. Org. Chem. 2002,
67, 7553.
8. For Akt enzyme assay details see: Barnett, S. F.; Defeo-Jones, D.; Fu, S.; Hancock,
P. J.; Haskell, K. M.; Jones, R. E.; Kahana, J. A.; Kral, A.; Leander, K.; Lee, L. L.;
Malinowski, J.; McAvoy, E. M.; Nahas, D. D.; Robinson, R.; Huber, H. E. Biochem.
J. 2005, 385, 399.
Table 2
hERG binding affinity for selected compoundsa
Compound
9
10
13
14
15
9. For all of these assays (enzyme Akt1 and Akt2 and cell Akt1 and Akt2 assays)
the standard deviation for a positive control is less than 50% of the IC50 value.
10. See also reference6b: The reason for the apparent disconnect between the
enzyme and cell activity for Akt2 isozyme is not well understood.
11. The hERG IC50 values were acquired by radioligand binding competition
experiments using membrane preparations from human embryonic kidney
cells that express hERG. For assay detail see Bell, I. M.; Gallicchio, S. N.; Abrams,
M.; Beshore, D. C.; Buser, C. A.; Culberson, J. C.; Davide, J.; Ellis-Hutchings, M.;
Fernandes, C.; Gibbs, J. B.; Graham, S. L.; Hartman, G. D.; Heimbrook, D. C.;
Homnick, C. F.; Huff, J. R.; Kassahun, K.; Koblan, K. S.; Kohl, N. E.; Lobell, R. B.;
Lynch, J. J., Jr.; Miller, P. A.; Omer, C. A.; Rodrigues, A. D.; Walsh, E. S.; Williams,
T. M. J. Med. Chem. 2001, 44, 2933.
hERG binding IC50 (nM)
5319
5312
>10,000
2778
2018
a
IC50 values are reported as the averages of at least two independent determi-
nations;11 standard deviations are within 25–50% of IC50 values.
Table 3
Inhibition of Akt1 and Akt2 in mouse lung with compound 13 and 1a
Compound Dose (mg/ Blood conc
% Akt1 inhibition
in lung
% Akt2 inhibition
in lung
mL)
(lM)
13
18
70
10
1.8 0.6
1.7 0.5
3.0 0.9
92
89 19
85
3
41 20
35 15
12. Experimental design: Subjects: Tumor (C33a cervical carcinoma cells) bearing
nude mice. Vehicle (25% hydroxypropyl-b-cyclodextrin); 13 hydrochloride
dosed via mini-pump (at 70 mg/mL and 18 mg/mL concentrations) at a rate of
1
6
4
7
a
8 lL/hr over 20 hrs. Blood draw for PK at 3, 6, 8, 11 and 20 h. Animals were
Compounds were delivered via mini-pump to nude mice (3 per concentration);
euthanized at 20 h time point.
13. Compound solubility issue was likely the cause for the non-linear
proportionality of drug concentrations versus dosage.
Blood concentrations are the average over the course of the experiment; Akt inhi-
bition data are from 20-h time points and the Akt phosphorylation activity was
determined by IP kinase assay in lung.