L. I. Palmer, G. K. Veits, J. Read de Alaniz
SHORT COMMUNICATION
[2]
[3]
[4]
a) F. de Ávila Rodrigues, R. Guirardello, Chem. Eng. Technol.
2008, 31, 883–892; b) see ref.[3,5h] and references cited therein.
R. Karinen, K. Vilonen, M. Niemalä, ChemSusChem 2011, 4,
1002–1016.
two-step protocol is superior for the conversion of spirocy-
cle 1 into cyclopentenone 2.
For select examples, see: a) O. Achmatowicz Jr., P. Bukowski,
B. Szechner, Z. Zwierzchowska, A. Zamojski, Tetrahedron
1971, 27, 1973–1996; b) G. Piancatelli, M. D’Auria, F. D’Onof-
rio, Synthesis 1994, 867–889; c) S.-W. Li, R. A. Batey, Chem.
Commun. 2007, 3759–3761; d) B.-L. Yin, W.-M. Wu, T.-S. Hu,
Y.-L. Wu, Eur. J. Org. Chem. 2003, 4016–4022; e) B.-L. Yin, J.-
Q. Lai, Z.-R. Zhang, H.-F. Jiang, Adv. Synth. Catal. 2011, 353,
1961–1965; f) B. Yin, L. Huang, X. Wang, J. Liu, H. Jiag, Adv.
Synth. Catal. 2013, 355, 370–376 , and references cited therein.
For examples of recent applications, see; a) A. Gassama, C.
Ernenwein, N. Hoffmann, Green Chem. 2010, 12, 859–865; b)
P. Galletti, A. Montecavalli, F. Moretti, A. Pasteris, C. Samorí,
E. Tagliavini, New J. Chem. 2009, 33, 1859–1868; c) A. Kabro,
E. C. Escudero-Adán, V. V. Grushin, P. W. N. M. van Leeuwen,
Org. Lett. 2012, 14, 4014–4017; d) C. Zeng, H. Seino, J. Ren,
K. Hatanaka, N. Yoshie, Macromolecules 2013, 46, 1794–1802;
for select synthesis examples, see: e) A. T. Herrmann, S. R.
Martinez, A. Zakarian, Org. Lett. 2011, 13, 3636–3639; f) J. P.
Henschke, Y. Liu, X. Huang, Y. Chen, D. Meng, L. Xia, X.
Wei, A. Xie, D. Li, Q. Huang, T. Sun, J. Wang, X. Gu, X.
Huang, L. Wang, J. Xiao, S. Qiu, Org. Process Res. Dev. 2012,
16, 1905–1916; for more recent advances of the Piancatelli reac-
tion, see: g) K. Ulbrich, P. Kreitmeier, O. Reiser, Synlett 2010,
13, 2037–2040; h) J.-P. Lange, E. van der Heide, J. van Buijt-
enen, R. Price, ChemSusChem 2012, 5, 150–166.
Conclusions
In conclusion, we have demonstrated the operationally
simple conversion of spirocyclic ethers into fused bicyclic
ethers through an acid-catalyzed isomerization. This trans-
formation provides direct access to fused oxabicycles, which
are important intermediates in the total synthesis of numer-
ous biologically active molecules. We believe this approach
to fused oxabicycles is attractive, because it demonstrates
the versatile nature of using renewable resources to build
molecular diversity, and as such, current efforts are focused
on extending this methodology to include industrially im-
portant transformations and to utilizing our products as
substrates for further synthetic manipulations.
[5]
Experimental Section
General Procedure for the Synthesis of Fused Bicyclic Ethers: Oxa-
spirocycle 1 (0.05 mmol) was stirred as a solution in toluene
(1.2 mL) at 23 °C and treated with Amberlyst®15 (20 mg). The re-
action flask was immediately placed in an oil bath preheated to
60 °C. Upon completion of the reaction (as evident by TLC), the
reaction mixture was cooled to room temperature and filtered
through cotton and eluted with ethyl acetate. The combined or-
ganic layer was concentrated in vacuo to afford oxabicycle 2.
[6]
[7]
a) G. K. Veits, D. R. Wenz, J. Read de Alaniz, Angew. Chem.
2010, 122, 9674–9677; Angew. Chem. Int. Ed. 2010, 49, 9484–
9487; b) L. I. Palmer, J. Read de Alaniz, Angew. Chem. 2011,
123, 7305–7308; Angew. Chem. Int. Ed. 2011, 50, 7167–7170;
c) L. I. Palmer, J. Read de Alaniz, Org. Lett. 2013, 15, 476–479;
d) D. R. Wenz, J. Read de Alaniz, Org. Lett. 2013, 15, 3250–
3253.
Supporting Information (see footnote on the first page of this arti-
cle): General procedures and characterization data of compounds.
A. Scettri, G. Piancatelli, M. D’Auria, G. David, Tetrahedron
1979, 35, 135–138.
[8] a) G. Stork, C. Kowalski, G. Garcia, J. Am. Chem. Soc. 1975,
97, 3258–3260; b) F. G. West, G. U. Gunawardena, J. Org.
Chem. 1993, 58, 2402–2406.
[9] For studies on furylcarbinols to access fused bicycles, see: a)
B.-L. Yin, Y. Wu, Y.-L. Wu, J. Chem. Soc. Perkin Trans. 1 2002,
1746–1747; b) B.-L. Yin, Y.-L. Wu, J.-Q. Lai, Eur. J. Org. Chem.
2009, 2695–2699.
[10] On the basis of the NOE and crystal structure of 14, the stereo-
chemistry of 15 and 16 were assigned by analogy.
[11] M. Tada, K. Chiba, Agric. Biol. Chem. 1984, 48, 1367–1369.
[12] See the Supporting Information. CCDC-931233 contains the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Received: June 5, 2013
Acknowledgments
This work was supported by the National Science Foundation
(NSF), USA (CAREER Award CHE-1057180) and the University
of California, Santa Barbara (UCSB). The authors kindly acknow-
ledge additional support provided by UCSB Graduate Research
Mentorship Program Fellowship (to G. K. V.) and also thank Dr.
Guang Wu (UCSB) for X-ray analysis.
[1] a) K. J. Zeitsch, The Chemistry and Technology of Furfural and
Its Many By-Products, Elsevier, Amsterdam, The Netherlands,
2000, vol. 13; b) R. Diercks, J.-D. Arndt, S. Freyer, R. Geier,
O. Machhammer, J. Schwartze, M. Volland, Chem. Eng. Tech-
nol. 2008, 31, 631–637.
Published Online: August 26, 2013
6240
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 6237–6240