10.1002/cbic.202000362
ChemBioChem
FULL PAPER
Acknowledgements
This work was supported by a National Science Foundation
(NSF) Career Award (CHE-1552718). This research made use
of instrumentation funded by the UNC EFRC: Center for Solar
Fuels, an Energy Frontier Research Center supported by the
U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under award number DE-SC0001011.
Keywords: Artificial Cofactors • Biocatalysis • Artificial Enzyme •
Photoredox Catalysis • Sulfoxidation
[1]
[2]
[3]
M. E. Wilson, G. M. Whitesides, J. Am. Chem. Soc. 1978, 100, 306–
307.
S. Abe, J. Niemeyer, M. Abe, Y. Takezawa, T. Ueno, T. Hikage, G.
Erker, Y. Watanabe, J. Am. Chem. Soc. 2008, 130, 10512–10514.
I. S. Hassan, A. N. Ta, M. W. Danneman, N. Semakul, M. Burns, C. H.
Basch, V. N. Dippon, B. R. McNaughton, T. Rovis, J. Am. Chem. Soc.
2019, 141, 4815–4819.
[4]
F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V.
Lebrun, R. Reuter, V. Köhler, J. C. Lewis, T. R. Ward, Chem. Rev.
2018, 118, 142–231.
[5]
[6]
H. J. Davis, T. R. Ward, ACS Cent. Sci. 2019, 5, 1120–1136.
H. M. Key, P. Dydio, D. S. Clark, J. F. Hartwig, Nature 2016, 534, 534–
537.
[7]
[8]
G. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, ACS Catal. 2017, 7,
7629–7633.
H. Yang, A. M. Swartz, H. J. Park, P. Srivastava, K. Ellis-Guardiola, D.
M. Upp, G. Lee, K. Belsare, Y. Gu, C. Zhang, et al., Nature Chemistry
2018, 10, 318–324.
Figure 4. Sulfoxidation of aryl-substitued thioethers catalyzed by Mes-Acr+ 2a
and best scaffold hit Tm(AspDH) with 2b.
[9]
T. K. Hyster, L. Knörr, T. R. Ward, T. Rovis, Science 2012, 338, 500–
503.
[10] C. J. Seel, T. Gulder, ChemBioChem 2019, 20, 1871–1897.
[11] L. Zhang, J. Yuan, Y. Xu, Y.-H. P. Zhang, X. Qian, Chem. Commun.
2016, 52, 6471–6474.
[12] M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81,
6898–6926.
Conclusion
In summary, we report the preparation, characterization, and
application of twelve novel artificial photoredox enzymes. Two
derivatives of the organic photoredox catalyst, 9-mesityl-10-
phenyl acirindium (Mes-Acr+), were synthesized and covalently
tethered to three thermostable protein scaffolds at two different
anchoring sites each. The photophysical properties of each of
the bound Mes-Acr+ catalysts were analyzed and compared
alongside the free cofactor in solution. It was found that the
identity of the protein scaffold can have a measurable effect on
the quantum yield of fluorescence and excited state lifetime of
the chromophore, both important properties for applications in
photoredox catalysis. Reaction screening of the Mes-Acr+-
modified protein scaffolds revealed all are active photoenzymes,
but the performance of these catalysts towards light-driven
sulfoxidation is dependent on multiple factors including the
artificial cofactor, the protein scaffold, the location of cofactor
immobilization, and the reaction substrate. It is likely that a
single protein scaffold will not be sufficient to serve as a general
platform for catalysis and that there is significant benefit in
generating a library of hybrid protein scaffolds for reaction
screening. The field of engineering artificial photoredox cofactors
is still very young and we anticipate that the general design
strategy presented herein as well as the specific Mes-Acr+
cofactors and protein scaffolds in this study will be informative
for future artificial biocatalysis developments.
[13] N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
[14] H. A. Frank, R. J. Cogdell, Photochemistry and Photobiology 1996, 63,
257–264.
[15] J. M. Christie, Annu. Rev. Plant Biol. 2007, 58, 21–45.
[16] M. A. Emmanuel, N. R. Greenberg, D. G. Oblinsky, T. K. Hyster, Nature
2016, 540, 414–417.
[17] B. A. Sandoval, A. J. Meichan, T. K. Hyster, J. Am. Chem. Soc. 2017,
139, 11313–11316.
[18] L. Schmermund, V. Jurkaš, F. F. Özgen, G. D. Barone, H. C.
Büchsenschütz, C. K. Winkler, S. Schmidt, R. Kourist, W. Kroutil, ACS
Catal. 2019, 9, 4115–4144.
[19] N.-H. Tran, N. Huynh, T. Bui, Y. Nguyen, P. Huynh, M. E. Cooper, L. E.
Cheruzel, Chem. Commun. 2011, 47, 11936–11938.
[20] V. Sosa, M. Melkie, C. Sulca, J. Li, L. Tang, J. Li, J. Faris, B. Foley, T.
Banh, M. Kato, et al., ACS Catal. 2018, 8, 2225–2229.
[21] Y. Gu, K. Ellis‐Guardiola, P. Srivastava, J. C. Lewis, ChemBioChem
2015, 16, 1880–1883.
[22] P. D. Morse, D. A. Nicewicz, Chem. Sci. 2014, 6, 270–274.
[23] L. Wang, F. Wu, J. Chen, D. A. Nicewicz, Y. Huang, Angewandte
Chemie International Edition 2017, 56, 6896–6900.
[24] K. Ohkubo, K. Mizushima, R. Iwata, K. Souma, N. Suzuki, S. Fukuzumi,
Chem. Commun. 2010, 46, 601–603.
[25] D. J. Wilger, J.-M. M. Grandjean, T. R. Lammert, D. A. Nicewicz, Nature
Chemistry 2014, 6, 720–726.
[26] H. M. Key, P. Dydio, Z. Liu, J. Y.-E. Rha, A. Nazarenko, V.
Seyedkazemi, D. S. Clark, J. F. Hartwig, ACS Cent. Sci. 2017, 3, 302–
308.
[27] R. R. Davies, H. Kuang, D. Qi, A. Mazhary, E. Mayaan, M. D.
Distefano, Bioorganic & Medicinal Chemistry Letters 1999, 9, 79–84.
[28] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.;
Springer: New York, 2006.
[29] G. Jones, D. Yan, J. Hu, J. Wan, B. Xia, V. I. Vullev, J. Phys. Chem. B
2007, 111, 6921–6929.
4
This article is protected by copyright. All rights reserved.