M. Oba et al. / Tetrahedron Letters 50 (2009) 5053–5055
5055
Table 2
serine and Meldrum’s acid, with NaBH4 followed by iodination of
the hydroxyl group directly affords the unsaturated pyroglutami-
nol derivatives in good yields over four steps without affecting
chiral integrity.
Preparation of unsaturated pyroglutaminol 1a–d via a halogenation–dehydrohalo-
genation sequence
OH
OR2
I
iodination conditions
reflux, on
OR2
O
O
N
N
R1
References and notes
R1
1. Books and reviews: (a) Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis.
Construction of Chiral Molecule Using Amino Acids; John Wiley: New York, 1987;
(b) Sardina, F. J.; Rapoport, H. Chem. Rev. 1996, 96, 1825–1872; (c) Nájera, C.;
Yus, M. Tetrahedron: Asymmetry 1999, 10, 2245–2303.
2. Pioneering works: (a) Ohfune, Y.; Tomita, M. J. Am. Chem. Soc. 1982, 104, 3511–
3513; (b) Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org. Chem.
1991, 56, 4167–4176; (c) Hamada, Y.; Kawai, A.; Kohno, Y.; Hara, O.; Shioiri, T. J.
Am. Chem. Soc. 1989, 111, 1524–1525; (d) Hanessian, S.; Ratovelomanana, V.
Synlett 1990, 501–503; (e) Baldwin, J. E.; Moloney, M. G.; Shim, S. B. Tetrahedron
Lett. 1991, 32, 1379–1380.
8a-d
III
OR2
elimination
O
N
R1
1a-d
Entry
R1
R2
Conditions
Yielda (%)
3. Recent examples: (a) Flemer, S.; Wurthmann, A.; Mamai, A.; Madalengoitia, J. S.
J. Org. Chem. 2008, 73, 7593–7602; (b) Einsiedel, J.; Lanig, H.; Waibel, R.;
Gmeiner, P. J. Org. Chem. 2007, 72, 9102–9113; (c) Spiess, S.; Berthold, C.;
Weihofen, R.; Helmchen, G. Org. Biomol. Chem. 2007, 5, 2357–2360; (d) Alvarez
de Cienfuegos, L.; Langlois, N. Tetrahedron: Asymmetry 2006, 17, 1863–1866; (e)
Milne, C.; Powell, A.; Jim, J.; Al Nakeeb, M.; Smith, C. P.; Micklefield, J. J. Am.
Chem. Soc. 2006, 128, 11250–11259; (f) Hanessian, S.; Gauchet, C.; Charron, G.;
Marin, J.; Nakache, P. J. Org. Chem. 2006, 71, 2760–2778.
1
2
3
4
5
6
7
Boc
Boc
Boc
Boc
Boc
Fmoc
Cbz
Bn
Bn
Bn
Bn
TBDMS
tert-Bu
Bn
(a)
(a)
(a)
(a)
(b)
(c)
(d)
MeI, Ph3P, DEAD, THF
MeI, Ph3P, DMAD, THF
I2, Ph3P, imidazole, CH2Cl2
I2, ps-Ph3P, imidazole, CH2Cl2
I2, ps-Ph3P, imidazole, CH2Cl2
I2, ps-Ph3P, imidazole, CH2Cl2
I2, ps-Ph3P, imidazole, CH2Cl2
36
61
83
80
90
78
81
4. (a) Oba, M.; Kobayashi, M.; Oikawa, F.; Nishiyama, K.; Kainosho, M. J. Org. Chem.
2001, 66, 5919–5922; (b) Oba, M.; Miyakawa, A.; Shionoya, M.; Nishiyama, K. J.
Labelled Compd. Radiopharm. 2001, 44, 141–147; (c) Oba, M.; Miyakawa, A.;
Nishiyama, K.; Terauchi, T.; Kainosho, M. J. Org. Chem. 1999, 64, 9275–9278.
5. (a) Oba, M.; Nishiyama, N.; Nishiyama, K. Chem. Commun. 2003, 776–777; (b)
Oba, M.; Nishiyama, N.; Nishiyama, K. Tetrahedron 2005, 61, 8456–8464; (c)
Oba, M.; Saegusa, T.; Nishiyama, N.; Nishiyama, K. Tetrahedron 2009, 65, 128–
133.
a
Isolated yield.
H2, 10% Pd/C
OH
1a
O
N
Boc
AcOEt
96%
6. Herdeis, C.; Kelm, B. Tetrahedron 2003, 59, 217–229.
7. Huwe, C. M.; Kiehl, O. C.; Blechert, S. Synlett 1996, 65–66.
9
8. (a) Jouin, P.; Castro, B.; Nisato, D. J. Chem. Soc., Perkin Trans. 1 1987, 1177–1182;
(b) Galeotti, N.; Poncet, J.; Chiche, L.; Jouin, P. J. Org. Chem. 1993, 58, 5370–5376.
9. (a) Ma, D.; Ma, J.; Ding, W.; Dai, L. Tetrahedron: Asymmetry 1996, 7, 2365–2370;
(b) He, G.; Wang, J.; Ma, D. Org. Lett. 2007, 9, 1367–1369.
10. Jiang, J.; Li, W.-R.; Przeslawski, R. M.; Joullié, M. M. Tetrahedron Lett. 1993, 34,
6705–6708.
RuCl3, NaIO4
acetone-H2O
O
CO2H
N
Boc
10
11. All calculations were performed using the GAUSSIAN 03 program package: Frisch,
M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega,
N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.;
Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz,
J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03,
Revision D.02; Gaussian: Wallingford, CT, 2004.
1) 1M HCl, reflux, 3 h
HO2C
CO2H
NH2
11
2) propylene oxide,
EtOH, reflux, 1 h
59% (3 steps)
Scheme 3. Conversion of 1a to
D
-glutamic acid (11).
in the presence of 10% palladium on carbon and the liberated
hydroxymethyl group of pyroglutaminol 9 was oxidized with
RuO4 prepared in situ from RuCl3 and NaIO4.15 The obtained crude
pyroglutamic acid 10 was hydrolyzed in refluxing 1 M HCl for 3 h
to give glutamic acid hydrochloride which upon treatment with
12. Geometry of III0 was fully optimized at the B3LYP level of theory using the 6-
31G(d) basis set in combination with the LANL2DZdp effective core potential
basis set for iodine atom. This combination is denoted as 6-
31G(d)+LANL2DZdp(I). The basis set for I was obtained from use of the Basis
Set Exchange software and the EMSL Basis Set Library: (a) Feller, D. J. Comput.
Chem. 1996, 17, 1571–1586; (b) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.;
Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007,
47, 1045–1052.
propylene oxide in refluxing ethanol gave free
D-glutamic acid
(11) in 59% yield over three steps. As expected, the enantiomeric
purity of 11 was found to be >99% by HPLC analysis using a chiral
stationary column (MCIGEL CRS10W).
In conclusion, we developed a novel and concise approach to
the synthesis of unsaturated pyroglutaminol derivatives, versatile
chiral building blocks for the synthesis of optically active com-
pounds. Reduction of tetramic acid, obtained from the protected
13. Haynes, R. K.; Holden, M. Aust. J. Chem. 1982, 35, 517–524.
14. Anilkumar, G.; Nambu, H.; Kita, Y. Org. Process Res. Dev. 2002, 6, 190–191.
15. Haines, A. H. Methods for the Oxidation of Organic Compounds; Academic Press:
London, 1988.