pubs.acs.org/joc
complexes can be particularly effective in selectively activat-
The Au(I)-Catalyzed Intramolecular Hydroarylation
of Terminal Alkynes Under Mild Conditions:
Application to the Synthesis of 2H-Chromenes,
Coumarins, Benzofurans, and Dihydroquinolines
ing alkynes toward nucleophilic addition and numerous
reactions employing this strategy have been disclosed
recently.2 The majority of such processes require a cocata-
lyst, usually in the form of a silver salt, to activate the Au(I)
species that is used. However, these silver salts are often
hygroscopic, difficult to weigh accurately, and frequently
result in an acidic reaction medium. Furthermore, the pre-
sence of a silver cocatalyst can promote unwanted side
reactions.3 Accordingly, a single-component Au(I) species
that can activate alkynes toward nucleophilic attack offers
numerous advantages over the conventional Au-Ag coca-
talyst systems.
Rajeev S. Menon, Alison D. Findlay, Alex C. Bissember, and
Martin G. Banwell*
Research School of Chemistry, Institute of Advanced Studies,
The Australian National University, Canberra, ACT 0200,
Australia
Recently, Echavarren and co-workers reported the synthesis
of the stable Au(I) complex 1 possessing a weakly coordinating
acetonitrile ligand that can, in the absence of silver and upon
addition of a suitable substrate, be replaced by alkyne func-
tionalities.4 As a result this complex, which is able to be
handled under standard benchtop conditions, has proven
effective in catalyzing the cyclization of both enynes2g,5a and
indole-tethered alkynes.5b
Received September 21, 2009
Operationally simple Au(I)-catalyzed intramolecular
hydroarylation (IMHA) reactions of terminal alkynes
that proceed in high yield and under very mild conditions
are described. These processes involve low catalyst load-
ings, mild reaction temperatures, and short reaction
times, require no cocatalysts or additives, and allow for
the generation of a number of important heterocyclic
motifs from readily accessible starting materials.
Our recent discovery of a highly efficient cascade reaction6
that is catalyzed by complex 1 prompted us to investigate the
capacity of this species to effect the intramolecular hydro-
arylation (IMHA) of alkynes. The latter process involves the
formal addition of an arene unit and a hydrogen across the
sp-hybridized carbons of a tethered alkyne.7 While metals
such as Pd,8 Ru,9 Ga,10 Pt,11 and Hg12 as well as Tf2NH13 are
(3) (a) Nevado, C.; Echavarren, A. M. Chem. Eur. J. 2005, 11, 3155.
(b) Curtis, N. R.; Prodger, J. C.; Rassias, G.; Walker, A. J. Tetrahedron Lett.
2008, 49, 6279.
Cationic gold complexes are rapidly emerging as excellent
catalysts for facilitating the assembly of a variety of car-
bon-carbon and carbon-heteroatom bonds with the result
that powerful new methodologies based upon such processes
are now being reported with increasing frequency.1 Such
ꢀ
ꢀ
(4) Herrero-Gomez, E.; Nieto-Oberhuber, C.; Lopez, S.; Benet-Buchholz,
J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 5455.
ꢀ
ꢀ~
(5) (a) Jimenez-Nunez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren,
A. M. Angew. Chem., Int. Ed. 2006, 45, 5452. (b) Ferrer, C.; Echavarren, A. M.
Angew. Chem., Int. Ed. 2006, 45, 1105.
(6) Banwell, M. G.; Sharp. P. P. Unpublished results.
(1) Recent reviews: (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem.,
€
2007, 46, 3410. (c) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.
(d) Hashmi, A. S. K. Nature 2007, 449, 292. (e) Hashmi, A. S. K. Chem.
Rev. 2007, 107, 3180. (f) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108,
(7) Reviews: (a) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167.
(b) Shen, H. C. Tetrahedron2008, 64, 3885. (c) Skouta, R.; Li, C.-J. Tetrahedron
2008, 64, 4917. (d) Kitamura, T. Eur. J. Org. Chem. 2009, 1111. For examples
of the Au(I)-catalyzed IMHA reactions, see: (e) Reetz, M.; Sommer, K. Eur.
J. Org. Chem. 2003, 3485. (f) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669.
(8) (a) Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie, M.;
Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252. (b) Jia, C.; Piao, D.;
Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992.
(9) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org. Chem. 2000, 65,
4913.
Int. Ed. 2006, 45, 7896. (b) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed.
ꢀ
ꢀ~
3239. (g) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
(h) Arcadi, A. Chem. Rev. 2008, 108, 3266. (i) Gorin, D. J.; Sherry, B. D.;
Toste, F. D. Chem. Rev. 2008, 108, 3351.
(2) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 4526. (b) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am.
Chem. Soc. 2004, 126, 10858. (c) Johansson, M. J.; Gorin, D. J.; Staben, S. T.;
Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (d) Nieto-Oberhuber, C.;
(10) (a) Inoue, H.; Chatani, N.; Muari, S. J. Org. Chem. 2002, 67, 1414.
(b) Yadav, J. S.; Reddy, B. V. S.; Padmavani, B.; Gupta, M. K. Tetrahedron
Lett. 2004, 45, 7577.
ꢀ
Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178.
(e) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133. (f) Zhang,
ꢀ
€
(11) (a) Furstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
€
(b) Furstner, A.; Mamane, V. Chem. Commun. 2003, 2112. (c) Mamane,
L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (g) Nieto-
ꢀ
ꢀ
ꢀ
Oberhuber, C.; Perez-Galan, P.; Herrero-Gomez, E.; Lauterbach, T.;
Rodrıguez, C.; Lopez, S.; Bour, C.; Rosellon, A.; Cardenas, D. J.; Echavarren,
€
V.; Hannen, P.; Furstner, A. Chem. Eur. J. 2004, 10, 4556. (d) Pastine, S, J.;
ꢀ
ꢀ
ꢀ
Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055. (e) Pastine, S, J.; Youn,
S. W.; Sames, D. Tetrahedron 2003, 59, 8859.
A. M. J. Am. Chem. Soc. 2008, 130, 269.
DOI: 10.1021/jo902032p
r
Published on Web 10/22/2009
J. Org. Chem. 2009, 74, 8901–8903 8901
2009 American Chemical Society