R.K. Sharma et al. / Inorganica Chimica Acta 397 (2013) 21–31
31
Table 5
References
Recycling of the catalyst.a
[1] A.B. Sorokin, E.V. Kudrik, Catal. Today 159 (2011) 37.
[2] R.K. Sharma, C. Sharma, Tetrahedron Lett. 51 (2010) 4415.
Run
Yield (%)
TON (TOF)
1
2
3
4
5
6
99
98
98
95
88
85
275 (825)
272 (816)
272 (816)
263 (791)
244 (733)
236 (708)
[3] P. Kumari, S.M.S. Poonam, Chauhan, Chem. Commun. (2009) 6397.
[4] E. Kockrick, T. Lescouet, E.V. Kudrik, A.B. Sorokin, D. Farrussen, Chem.
Commun. 47 (2011) 1562.
[5] Y.C. Yang, J.R. Ward, R.P. Seiders, Inorg. Chem. 24 (1985) 1765.
[6] B. Gonzalez-Santiago, V. de la Luz, M.I. Coahuila-Hernandez, F. Rojas, S.R. Tello-
Solís, A. Campero, M.A. Garcia-Sanchez, Polyhedron 30 (2011) 1318.
[7] C. Shen, Y. Wen, Z. Shen, J. Wu, W. Liu, J. Hazard. Mater. 193 (2011) 209.
[8] R.K. Sharma, S. Gulati, A. Pandey, A. Adholeya, Appl. Catal. B: Environ. 125
(2012) 247.
a
Reaction conditions: OPDA (1.0 mmol), acetone (2.2 mmol), catalyst (30 mg),
room temperature, 20 min.
[10] C.S. Shen, S.F. Song, L.L. Zang, X.D. Kang, Y.Z. Wen, W.P. Liu, L.S. Fu, J. Hazard.
Mater. 177 (2010) 560.
3.3. Comparison of ZnPcOC6F5–APTES@SiO2 catalyst with other
reported heterogeneous catalysts
[11] D. Brunel, N. Belloq, P. Sutra, A. Cauvel, M. Lasperas, P. Moreau, F. Di Renzo, A.
Galarneau, F. Fajula, Coord. Chem. Rev. 1085 (2008) 178.
[12] R. Sharma, S. Dhingra, Designing and Synthesis of Functionalized Silica Gels
and their Applications as Metal Scavengers, Sensors, and Catalysts: A Green
Chemistry Approach, LAP Lambert Academic Publishing, Germany, 2011.
[13] A.R. McDonald, N. Franssen, G.P.M.V. Klink, G.V. Koten, J. Organomet. Chem.
694 (2009) 2153.
[14] C. Kang, J. Huang, W. He, F. Zhang, J. Organomet. Chem. 695 (2010) 120.
[15] N. Fukaya, H. Haga, T. Tsuchimoto, S. Onozawa, T. Sakakura, J. Organomet.
Chem. 695 (2010) 2540.
[16] E. Tyrrell, L. Whiteman, N. Williams, J. Organomet. Chem. 696 (2011) 3465.
[17] C. Feher, E. Krivan, J. Hancsok, R. Skoda-Foldes, Green Chem. 14 (2012) 403.
[18] S. Ernst, M. Selle, Microporous Mesoporous Mater. 27 (1999) 355.
[19] J.R. De Baun, F.M. Pallos, D.R. Baker, US Patent 3978227 (1976).
[20] H. Schultz, Benzodiazepines, Springer, Heidelberg, 1982.
[21] S. Michelini, G.B. Cassano, F. Frare, G. Perugi, Pharmacopsychiatry 29 (1996)
127.
The efficiency of ZnPcOC6F5–APTES@SiO2 catalyst was also com-
pared with other reported heterogeneous catalysts for solvent-free
synthesis of 1,5-benzodiazepines (Table 4) [30,53–56]. The results
indicated the superiority of the present protocol in terms of yields,
selectivity, reaction conditions and reaction time. Moreover, the
present catalyst could be recovered and reused at least six times
without any appreciable loss of activity.
3.4. Recycling and heterogeneity test
For heterogeneous catalyst, reusability is one of the most signif-
icant parameter, and is of great importance in industrial applica-
tions. Thus, we have investigated the recovery and reusability of
the supported catalyst using acetone and o-phenylenediamine as
model substrates. After the completion of reaction, ethyl acetate
was added and the catalyst was filtered, washed thoroughly and
dried in an oven at 120 °C for 1 h. The recovered catalyst was re-
used for six times resulting in excellent yields of the corresponding
product. The products obtained were of the same purity as in all
runs. These results indicated that the catalyst does not undergo
appreciable change in its activity and selectivity (Table 5). In this
regard, the leaching of the ZnPcOC6F5 complex from the silica sup-
port was studied by atomic absorption spectroscopy, and indicated
no leaching of the ZnPcOC6F5 complex from the support. Thus, the
obtained catalytic results have been derived exclusively from the
heterogeneous catalyst.
[22] J.K. Landquist, Comprehensive Heterocyclic Chemistry, vol. 1, Pergamon,
Oxford, 1984.
[23] J.R. De Baun, F.M. Pallos, D.R. Baker, Chem. Abstr. 86 (1977) 5498d.
[24] R.K. Smiley, Comprehensive Organic Chemistry, Pergamon, Oxford, 1979.
[25] L.O. Randall, B. Kappel, in: S. Garattini, E. Mussini (Eds.), Benzodiazepines,
Raven Press, New York, 1973.
[26] D. Shobha, M.A. Chari, S.T. Selvan, H. Oveisi, A. Mano, K. Mukkanti, A. Vinu,
Microporous Mesoporous Mater. 129 (2010) 112.
[27] X.-Q. Pan, J.-P. Zou, Z.-H. Hauang, W. Zhang, Tetrahedron Lett. 49 (2008) 5302.
[28] W.Y. Chen, J. Lu, Syn. Lett. 2005 (2005) 1337.
[29] V. Sivamurugan, K. Deepa, M. Palanichamy, V. Murugesan, Syn. Commun. 34
(2004) 3833.
[30] M.A. Chari, K. Syamasundar, Catal. Commun. 6 (2005) 67.
[31] R. Kumar, P. Chaudhary, S. Nimesh, A.K. Verma, R. Chandra, Green Chem. 8
(2006) 519.
[32] R.K. Sharma, A. Pandey, S. Gulati, A. Adholeya, J. Hazard. Mater. 209–210
(2012) 285.
[33] R.K. Sharma, P. Pant, J. Hazard. Mater. 163 (2009) 295.
[34] R.K. Sharma, A. Goel, Anal. Chim. Acta 534 (2005) 137.
[35] R.K. Sharma, D. Rawat, J. Inorg. Organomet. Polym. 21 (2011) 619.
[36] R.K. Sharma, C. Sharma, Catal. Commun. 12 (2011) 327.
[37] R.K. Sharma, D. Rawat, G. Gaba, Catal. Commun. 19 (2012) 31.
[38] R.K. Sharma, D. Rawat, Inorg. Chem. Commun. 17 (2012) 58.
[39] R.K. Sharma, A. Pandey, S. Gulati, Appl. Catal. A: Gen. 431–432 (2012) 33.
[40] R.K. Sharma, C. Sharma, J. Mol. Catal. A: Chem 332 (2010) 53.
[41] R.K. Sharma, D. Rawat, J. Inorg. Organomet. Polym. 20 (2010) 698.
[42] R.K. Sharma, S. Gulati, S. Sachdeva, Green Chem. Lett. Rev. 5 (2012) 83.
[43] Z. Biyiklioglu, I. Acar, H. Kantekin, Inorg. Chem. Commun. 11 (2008) 630.
[44] T.E. Youssef, Polyhedron 29 (2010) 1776.
[45] E. DeOliveira, C.R. Neri, A.O. Ribeiro, V.S. Garcia, L.L. Costa, A.O. Moura, A.G.S.
Prado, O.A. Serra, Y. Iamamoto, J. Colloid Interface Sci. 323 (2008) 98.
[46] H.F. Hoefnagels, D. Wu, G. de With, W. Ming, Langmuir 23 (2007) 13158.
[47] R. Kureshy, I. Ahmad, N.H. Khan, S. Abdi, S. Singh, P. Pandia, R. Jasra, J. Catal.
235 (2005) 28.
4. Conclusion
We have developed an environmentally benign, facile,
efficient and cost-effective procedure for the synthesis of 1,5-
benzodiazepines using polyfluorinated–zinc(II)phthalocyanine
complex grafted onto the functionalized silica gel as catalyst.
Simple procedure, mild reaction conditions, short reaction times,
high yields, high TONs, and ease of recovery and recyclability of
the catalyst are the remarkable advantages of present protocol
leading to the development of a ‘‘green’’ procedure for the synthe-
sis of biologically important 1,5-benzodiazepines.
[48] S. Shylesh, A.P. Singh, J. Catal. 228 (2004) 333.
[49] A. Bhatt, K. Pathak, R. Jasra, R. Kureshy, N. Khan, S. Abdi, J. Mol. Catal. A: Chem.
244 (2005) 110.
[50] S.B. Hartono, S.Z. Qiao, J. Liu, K. Jack, B.P. Ladewig, Z. Hao, G.Q.M. Lu, J. Phys.
Chem. C. 114 (2010) 8353.
Acknowledgements
[51] J.-L. Liu, S. Xu, B. Yan, Eng. Aspects 373 (2011) 116.
[52] M. Kruk, M. Jaroniec, Y. Sakamoto, O. Terasaki, R. Ryoo, C.H. Ko, J. Phys. Chem. B
104 (2000) 292.
[53] R. Fazaeli, H. Aliyan, Appl. Catal. A: Gen. 331 (2007) 78.
[54] M.A. Alibeik, I.M. Baltork, Z. Zaghaghi, B.H. Yousefi, Catal. Commun. 9 (2008)
2496.
[55] A.V. Vijayasankar, S. Deepa, B.R. Venugopal, N. Nagaraju, Chin. J. Catal. 31
(2010) 1321.
[56] B.P. Bandgar, A.V. Patil, O.S. Chavan, J. Mol. Catal. A: Chem. 256 (2006) 99.
The financial assistance from University Grant Commission,
Delhi, India is acknowledged. Due thanks to AIRF, JNU, Delhi, India
for SEM analysis and IISc, Bangalore, India for solid state NMR
measurements.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in