3790 Inorganic Chemistry, Vol. 49, No. 8, 2010
Tamanini et al.
Figure 1. Click-generated fluorescent probes for Zn(II).
detection of Zn(II) both in cellular media and in vivo.2,8 The
vast majority of the sensors reported to date have focused on
imaging the spectroscopically silent d10 ion by preventing
fluorophore quenching by photoinduced electron transfer
(PET).9 This is because upon coordination of the functiona-
lized ligand to the metal ion fluorescence is switched on (since
the quenching mechanism is turned off) which allows the
rapid and facile visualization of this elusive metal ion in
biological samples. While many sensors for Zn(II) have been
reported, there continues to be extensive interest in the field.10
This is because the need remains for highly selective, non-toxic,
and water-soluble sensors able to operate at physiological pH,
which are also able to sense and quantify zinc levels over the
broad concentration range known to be present in biology.
Our recent interests in sensing have focused on the use of
macrocyclic based ligand systems.11 While oxygen rich
macrocycles have mainly found use as ligands for alkali
and alkali earth metals, azamacrocycles are more suited
toward coordinating the softer transition metals. Among
the azamacrocycles, cyclen is probably the most used for this
purpose, and it has proven to be a good ligand in a number of
PET-based probes for the zinc ion.12 Surprisingly, there are
very few examples of analogous small molecule cyclam-based
fluorescent sensors for Zn(II) that have been shown to
display selectivity for zinc.13 We recently reported the synthe-
sis of the cyclam-based fluorescent Zn(II) sensor 1 (Figure 1),
which was easily assembled via the Cu(I)-mediated Huisgen
[3 þ 2] “click” cycloaddition between a propargyl-functiona-
lized cyclam ionophore and an azide-functionalized naphtha-
limide fluorophore.11a While the “click” reaction has attrac-
ted increasing interest in recent years because of its potency in
the effective and facile “ligation” of different chemical moie-
ties, the resultant triazole has generally only been used as a
junction in the final structures.14 More recently, however,
several systems have appeared in which the heterocycle plays
an active role in the functionality of the final product;11a,b,14g-14i,15
(8) See for example: (a) Parkesh, R.; Lee, T. C.; Gunnlaugsson, T. Org.
Biomol. Chem. 2007, 5, 310–317. (b) Wang, J.; Xiao, Y.; Zhang, Z.; Qian, X.;
Yang, Y.; Xu, Q. J. Mater. Chem. 2005, 15, 2836–2839. (c) Huang, S.; Clark,
R. J.; Zhu, L. Org. Lett. 2007, 9, 4999–5002. (d) Liu, Y.; Zhang, N.; Chen, Y.;
Wang, L.-H. Org. Lett. 2007, 9, 315–318. (e) Bencini, A.; Berni, E.; Bianchi, A.;
Fornasari, P.; Giorgi, C.; Lima, J. C.; Lodeiro, C.; Melo, M. J.; Seixas de Melo, J.;
Jorge Parola, A.; Pina, F.; Pina, J.; Valtancoli, B. Dalton Trans. 2004, 2180–2187.
(f) Zhang, X.; Lovejoy, K. S.; Jasanoff, A.; Lippard, S. J. Proc. Natl. Acad. Sci.
U.S.A. 2007, 104, 10780–10785. (g) Nolan, E. M.; Jaworski, J.; Okamoto, K. I.;
Hayashi, Y.; Sheng, M.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127, 16812–
16823. (h) Tomat, E.; Nolan, E. M.; Jaworski, J.; Lippard, S. J. J. Am. Chem. Soc.
2008, 130, 15776–15777. (i) Zhang, X.-a.; Hayes, D.; Smith, S. J.; Friedle, S.;
Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15788–15789. (j) Wong, B. A.;
Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7142–7152.
(12) See for example: (a) Kimura, E.; Aoki, S.; Kikuta, E.; Koike, T. Proc.
Natl. Acad. Sci., U.S.A. 2003, 100, 3731–3736. (b) Carol, P.; Sreejith, S.;
Ajayaghosh, A. Chem. Asian J. 2007, 2, 338–348. (c) Akkaya, E. U.; Huston, M.
E.; Czarnik, A. W. J. Am. Chem. Soc. 1990, 112, 3590–3593. (d) Koike, T.;
Watanabe, T.; Aoki, S.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1996, 118,
12696–12703. (e) Aoki, S.; Kaido, S.; Fujioka, H.; Kimura, E. Inorg. Chem.
ꢀ
2003, 42, 1023–1030. (f) El Majzoub, A.; Cadiou, C.; Dechamps-Olivier, I.;
Chuburu, F.; Aplincourt, M. Eur. J. Inorg. Chem. 2007, 5087–5097. (g) Aoki, S.;
Sakurama, K.; Matsuo, N.; Yamada, Y.; Takasawa, R.; Tanuma, S.; Shiro, M.;
Takeda, K.; Kimura, E. Chem.;Eur. J. 2006, 12, 9066–9080. (h) Hirano, T.;
Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 2000, 39,
1052–1054.
(9) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J.
M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–
1566. (b) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40. (c) Prodi, L.;
Bolletta, F.; Montaldi, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, 59–83.
(10) For some examples of recently reported PET Zn sensors see:
€
(13) (a) Moore, E. G.; Bernhardt, P. V.; Furstenberg, A.; Riley, M. J.;
Smith, T. A.; Vauthey, E. J. Phys. Chem. A 2005, 109, 3788–3796.
(b) Fabbrizzi, L.; Foti, F.; Licchelli, M.; Maccarini, P.; Sacchi, D.; Zema, M.
Chem.;Eur. J. 2002, 8, 4965–4972. (c) Park, S. M.; Kim, M. H.; Choe, J.-I.; No,
K. T.; Chang, S.-K. J. Org. Chem. 2007, 72, 3550–3553. (d) Saudan, C.; Balzani,
ꢀ
(a) Majzoub, A. E.; Cadiou, C.; Dechamps-Olivier, I.; Chuburu, F.;
Aplincourt, M.; Tinant, B. Inorg. Chim. Acta 2009, 362, 1169–1178.
(b) Liu, Z.; Zhang, C.; Li, Y.; Wu, Z.; Qian, F.; Yang, X.; He, W.; Gao, X.;
Guo, Z. Org. Lett. 2009, 11, 795–798. (c) Xu, Z.; Kim, G.-H.; Han, S. J.; Jou, M.
J.; Lee, C.; Shin, I.; Yoon, J. Tetrahedron 2009, 65, 2307–2312. (d) Li, H.-Y.;
Gao, S.; Xi, Z. Inorg. Chem. Commun. 2009, 12, 300–303. (e) Qian, F.; Zhang,
C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.; Guo, Z. J. Am. Chem. Soc. 2009, 131,
1460–1468. (f) Taki, M.; Watanabe, Y.; Yamamoto, Y. Tetrahedron Lett. 2009,
50, 1345–1347. (g) Xue, L.; Liu, C.; Jiang, H. Chem. Commun. 2009, 1061–
1063. (h) Hung, H.-C.; Cheng, C.-W.; Ho, I.-T.; Chung, W.-S. Tetrahedron Lett.
2009, 50, 302–305. (i) Xue, L.; Liu, C.; Jiang, H. Org. Lett. 2009, 11, 1655–1658.
(j) Khan, F. A.; Parasuraman, K.; Sadhu, K. K. Chem. Commun. 2009, 2399–
2401. (k) Xue, L.; Liu, Q.; Jiang, H. Org. Lett. 2009, 11, 3454–3457.
(l) Mizukami, A.; Okada, S.; Kimura, S.; Kikuchi, K. Inorg. Chem. 2009, 48,
7630–7638. (m) Chen, X.-Y.; Shi, J.; Li, Y.-M.; Wang, F.-L.; Wu, X.; Guo, Q.-X.;
Liu, L. Org. Lett. 2009, 11, 4426–4429. (n) Hanaoka, K.; Muramatsu, Y.; Urano,
Y.; Terai, T.; Nagano, T. Chem. Eur. J. 2010, 16, 568–572. (o) Xu, Z.; Baek, K.-
H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem.
Soc. 2010, 132, 601–610. (p) Zhou, Y.; Kim, H. N.; Yoon, J. Bioorg. Med. Chem.
Lett. 2010, 20, 125–128. (q) Ohshima, R.; Kitamura, M.; Morita, A.; Shiro, M.;
Yamada, Y.; Ikekita, M.; Kimura, E.; Aoki, S. Inorg. Chem. 2010, 49, 888–899.
(11) (a) Tamanini, E.; Katewa, A.; Sedger, L. M.; Todd, M. H.; Watkin-
son, M. Inorg. Chem. 2009, 48, 319–324. (b) Tamanini, E.; Rigby, S. E. J.;
Motevalli, M.; Todd, M. H.; Watkinson, M. Chem.;Eur. J. 2009, 15, 3720–
3728. (c) Krivickas, S. J.; Tamanini, E.; Todd, M. H.; Watkinson, M. J. Org.
Chem. 2007, 72, 8280–8289.
€
V.; Gorka, M.; Lee, S.-K.; Maestri, M.; Vicinelli, V.; Vogtle, F. J. Am. Chem. Soc.
2003, 125, 4424–4425.
(14) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021. (b) Whiting, M.; Muldoom, J.; Lin, Y.-C.; Silverman, S. M.;
Lindstrom, W.; Olson, A. J.; Kolb, H. C.; Finn, M. G.; Sharpless, K. B.; Elder,
J. H.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 1435–1439. (c) James, A. L.;
Tirrel, D. A. J. Am. Chem. Soc. 2003, 125, 11164–11165. (d) Wang, Q.; Chang,
T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc.
2003, 125, 3192–3193. (e) Lutz, J.-F. Angew. Chem., Int. Ed. 2007, 46, 1018–
1025. (f) Fournier, D.; Hoogenboom, R.; Schubert, U. S. Chem. Soc. Rev. 2007,
36, 1369–1380. (g) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org.
Lett. 2004, 4, 2853–2855. (h) Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X.
J. Org. Chem. 2006, 71, 3928–3934. (i) Detz, R. J.; Heras, S. A.; de Gelder, R.; N.
M. van Leeuwen, P. W.; Hiemstra, H.; Reek, J. N. H.; van Maarseveen, J. H. Org.
Lett. 2006, 8, 3227–3230. (j) Luo, S.; Xu, H.; Mi, X.; Li, J.; Zheng, X.; Cheng, J.-
P. J. Org. Chem. 2006, 71, 9244–9248. (k) Moorhouse, A. D.; Moses, J. E. Chem.
Med. Chem. 2008, 3, 715–723. (l) Tron, G. C.; Pirali, T.; Billington, R. A.;
Canonico, P. L.; Sorba, G.; Ganazzani, A. A. Med. Res. Rev. 2008, 28, 278–308.
(15) (a) Mindt, T. L.; Struthers, H.; Brans, L.; Anguelov, T.; Schweins-
ꢀ
berg, C.; Maes, V.; Tourwe, D.; Schibil, R. J. Am. Chem. Soc. 2006, 128,
15096–15097. (b) Huang, S.; Clark, R. J.; Zhu, L. Org. Lett. 2007, 24, 4999–
5002. (c) Chang, C.-K.; Su, I.-H.; Senthilvelan, A.; Chung, W.-S. Org. Lett. 2007,
17, 3363–3366. (d) Jauregui, M.; Perry, W. S.; Allain, C.; Vidler, L. R.; Willis, M.
C.; Kenwright, A. M.; Snaith, J. S.; Stasiuk, G. J.; Lowe, M. P.; Faulkner, S.
Dalton Trans. 2009, 6283–6285.