3812
J.E. Thomson et al. / Tetrahedron 66 (2010) 3801–3813
3. For a recent review of spiro[pyrrolidine-3,30-oxindole] natural products and
To a solution of 36 (97 mg, 0.200 mmol) in EtOH (1.0 mL) was
their therapeutic potential see; Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int.
Ed. 2007, 46, 8748.
4. For a review of the previous methods used to prepare the spiro[pyrrolidine-
3,30-oxindole] motif see Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209;
Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003.
5. Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. J. Org. Chem. 1991, 56,
6527.
6. Anderton, N.; Cockrum, P. A.; Colegate, S. M.; Edgar, J. A.; Flower, K.; Vit, I.;
Willing, R. I. Phytochemistry 1998, 48, 437.
7. Fisher, C.; Meyers, C.; Carreira, E. M. Helv. Chim. Acta 2000, 83, 1175.
8. For other applications of this methodology see: Lerchner, A.; Carreira, E. M.
J. Am. Chem. Soc. 2002, 124, 14826; Lerchner, A.; Carreira, E. M. Chem.dEur. J.
2006, 12, 8208.
9. Pellegrini, C.; Stra¨ssler, C.; Weber, M.; Borschberg, H. J. Tetrahedron: Asymmetry
1994, 5, 1979; Li, C.; Chan, C.; Heimann, A. C.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2007, 46, 1444.
added methylamine (2.0 M solution in THF, 0.30 mL, 0.60 mmol)
and the solution heated to 105 ꢂC in a sealed tube overnight. The
solution was concentrated in vacuo, the residue dissolved in CH2Cl2
(10 mL), washed with 0.1 N HCl (2 mLꢃ2), dried (MgSO4), filtered
and concentrated in vacuo. Chromatographic purification (EtOAc/
acetone 100:0/75:25) gave 37 (61 mg, 0.190 mmol, 95%) as a col-
ourless oil with spectroscopic data in accordance with the litera-
ture.7 dH (400 MHz, CDCl3) 7.25–7.15 (5H, m, ArH), 7.01 (1H, d, J¼2.5,
C(4)H), 6.58 (1H, dd, J¼8.5 and 2.5, C(6)H), 6.50 (1H, d, J¼8.5,
C(7)H), 4.80 (2H, s, CH2Ph), 3.69 (3H, s, OCH3), 3.02 (1H, td, J¼8.2,
3.9, C(50)HAHB), 2.87 (1H, AB q, JAB¼9.3, C(20)HAHB), 2.80 (1H, AB q,
JBA¼9.3, C(20)HAHB), 2.70 (1H, app q, J¼8.2, C(50)HAHB), 2.40 (3H, s,
NCH3), 2.32–2.38 (1H, m, C(40)HAHB), 2.02–2.09 (1H, m, C(40)HAHB);
dC (100 MHz, CDCl3) 180.2, 156.4, 137.2, 136.1, 135.4, 128.8, 127.6,
127.2, 112.2, 110.4, 109.1, 66.4, 56.7, 55.9, 53.8, 43.9, 41.9, 38.2.
10. Sua´rez-Castillo, O. R.; Mele´ndez-Rodrı´guez, M.; Contreras-Martı´nez, Y. M. A.;
´
´
´
Alvarez-Hernandez, A.; Morales-Rıos, M. S.; Joseph-Nathan, P. Nat. Prod.
Commun. 2009, 4, 797.
11. Somei, M.; Noguchi, K.; Yamagami, R.; Kawada, Y.; Yamada, K.; Yamada, F.
Heterocycles 2000, 53, 7.
12. Kuehne, M. E.; Roland, D. M.; Hafter, R. J. Org. Chem. 1978, 43, 3705.
13. (a) Palmisano, G.; Annunziata, R.; Papeo, G.; Sisti, M. Tetrahedron: Asymmetry
1996, 7, 1; (b) Cravotto, G.; Giovenzani, G. B.; Pilati, T.; Sisti, M.; Palmisano, G.
J. Org. Chem. 2001, 66, 8447.
14. Jones, K.; Wilkinson, J. J. Chem. Soc., Chem. Commun. 1992, 1767; Beckwith, A. L.
J.; Storey, J. M. D. J. Chem. Soc., Chem. Commun. 1995, 977; Lizos, D.; Tripoli, R.;
Murphy, J. A. Chem. Commun. 2001, 2732; Murphy, J. A.; Tripoli, R.; Khan, T. A.;
Mali, U. W. Org. Lett. 2005, 7, 3287.
4.3.22. Horsfiline 4.
NMe
MeO
O
N
H
15. Lizos, D.; Murphy, J. A. Org. Biomol. Chem. 2003, 1, 117.
4
16. Lakshmaiah, G.; Kawabata, T.; Shang, M. H.; Fuji, K. J. Org. Chem. 1999, 64, 1699.
17. Bascop, S. I.; Sapi, J.; Laronze, J. Y.; Levy, J. Heterocycles 1994, 38, 725.
18. Kumar, U. K. S.; Ila, H.; Junjappa, H. Org. Lett. 2001, 3, 4193.
19. Trost, B. M.; Brennan, M. K. Org. Lett. 2006, 8, 2027.
20. Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem.
2008, 6, 1108; Joannesse, C.; Simal, C.; Concello´n, C.; Thomson, J. E.; Campbell,
C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem. 2008, 6, 2900; Joannesse,
C.; Johnstone, C. P.; Concello´n, C.; Simal, C.; Philp, D.; Smith, A. D. Angew. Chem.,
Int. Ed. 2009, 48, 8914; Concello´n, C.; Duguet, N.; Smith, A. D. Adv. Synth. Cat.
2009, 351, 3001.
21. (a) For recent reviews of the ability of NHCs to catalyse organocatalytic pro-
cesses see: Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606; (b)
Marion, N.; Dı´ez-Gonza´lez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
22. For select other applications of NHCs as Lewis-base catalysts see: Zhang, Y. R.;
He, L.; Wu, X.; Shao, P. L.; Ye, S. Org. Lett. 2008, 10, 277; Lv, H.; Zhang, Y.-R.;
Huang, X.-L.; Ye, S. Adv. Synth. Catal. 2008, 350, 2715; He, L.; Lv, H.; Zhang, Y.-R.;
Ye, S. J. Org. Chem. 2008, 73, 8101; Wang, X.-N.; Shao, P.-L.; Lv, H.; Ye, S. Org. Lett.
2009, 11, 4029; Zhang, Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem.dEur. J. 2008, 14, 8473;
Huang, X.-L.; He, L.; Shao, L. P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192; Lv,
H.; You, L.; Ye, S. Adv. Synth. Catal. 2009, 351, 2822; Wang, X.-N.; Lv, H.; Huang,
X.-L.; Ye, S. Org. Biomol. Chem. 2009, 7, 346.
NH3 (~5 mL) was condensed at ꢁ78 ꢂC and Na (~20 mg) was
added with vigorous stirring at ꢁ33 ꢂC until the deep blue colour
persisted. A solution of 37 (10.0 mg, 0.031 mmol) in THF (0.50 mL)
was added dropwise and the mixture stirred at ꢁ33 ꢂC for 15 min
before the addition of NH4Cl (~50 mg). The ammonia was allowed
to evaporate, H2O (10 mL) was added and the mixture extracted
with EtOAc (3ꢃ10 mL). The combined organic layers were dried
(MgSO4), filtered and concentrated in vacuo. Chromatographic
purification (CH2Cl2/MeOH 100:0/90:10) gave
4
(4.1 mg,
0.018 mmol, 57%) as an off-white solid with spectroscopic data in
accordance with the literature.7 mp 140–142 ꢂC (lit. Mp 156–
157ꢂC); dH (400 MHz, CDCl3) 7.87 (1H, br s, NH), 7.04 (1H, d, J¼2.4,
C(4)H), 6.77 (1H, d, J¼8.4, C(7)H), 6.58 (1H, dd, J¼8.4 and 2.4,
C(6)H), 3.79 (3H, s, OCH3), 3.07–3.01 (1H, m, C(50)HAHB), 2.91–2.85
(2H, m, JAB¼9.3, C(20)H2), 2.76 (1H, app q, J¼8.2, C(50)HAHB), 2.46
(3H, s, NCH3), 2.40 (1H, ddd, J¼12.6, 7.9 and 4.6, C(40)HAHB), 2.14–
2.06 (1H, m, C(40)HAHB); dC (100 MHz, CDCl3) 182.4, 156.4, 133.3,
112.9, 110.5, 109.9, 66.0, 56.7, 56.1, 54.1, 41.8, 38.2 [C(3) not
observed].
23. Thomson, J. E.; Rix, K.; Smith, A. D. Org. Lett. 2006, 8, 3785; Thomson, J. E.;
Campbell, C. D.; Concello´n, C.; Duguet, N.; Rix, K.; Slawin, A. M. Z.; Smith, A. D.
´
J. Org. Chem. 2008, 73, 2784; Thomson, J. E.; Kyle, A. F.; Concellon, C.; Gallagher,
K. A.; Lenden, P.; Morrill, L. C.; Miller, A. J.; Joannesse, C.; Slawin, A. M. Z.; Smith,
A. D. Synthesis 2008, 17, 2805; Campbell, C. D.; Duguet, N.; Gallagher, K. A.;
Thomson, J. E.; Lindsay, A. G.; O’Donoghue, A. C.; Smith, A. D. Chem. Commun.
2008, 3528.
24. For other demonstrations of the O-to C-carboxyl transfer of heterocyclic car-
bonates with a variety of Lewis-bases see: Steglich, W.; Ho¨fle, G. Tetrahedron
Lett. 1970, 11, 4727; Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532; Shaw,
S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368; Shaw, S. A.;
Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128,
925; Nguyen, H. Y.; Butler, D. C. D.; Richards, C. J. Org. Lett. 2006, 8, 769;
Seitzberg, J. G.; Dissing, C.; Søtofte, I.; Norrby, P.-O.; Johannsen, M. J. Org. Chem.
2005, 70, 8332.
25. For the O-to C-carboxyl transfer of indolyl carbonates see: Moody, C. J.; Doyle,
K. J.; Elliott, M. C.; Mowlem, T. J. J. Chem. Soc., Perkin Trans. 1997, 1, 2413; Hills, I.
D.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 3921; Duffy, T. A.; Shaw, S. A.;
Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14; Ismail, M.; Nguyen, H. V.; Ilyashenko,
G.; Motevalli, M.; Richards, C. J. Tetrahedron Lett. 2009, 46, 6332.
Acknowledgements
The authors would like to thank the Royal Society for a Univer-
sity Research Fellowship (ADS), the EPSRC (KBL), AstraZeneca (Re-
search Support Fund) for enabling scholarship funding (SRS and
AFK) and the EPSRC mass spectrometry facility.
Supplementary data
26. The use of allylmagnesium chloride leads to addition at the C-2 carbonyl
1H and 13C NMR data is available for all products. Supplementary
data associated with this article can be found, in the online version,
´
Malapel-Andrieu, B.; Piroe¨lle, S.; Merour, J.-Y. J. Chem. Res. 1998, 9, 594.
27. Trost, B. M.; Frederiksen, M. U. Angew. Chem., Int. Ed. 2005, 44, 308.
28. Unfortunately, attempts to perform a catalytic enantioselective version of this
O- to C-carboxyl group transfer process of indolyl carbonates using either chiral
NHCs or isothioureas led to only modest asymmetric induction (typically <10%
ee) and so the synthesis was continued in the racemic series.
29. The formation of related spirocyclic lactones after dihydroxylation of similar
oxindole substrates with an ester functionality at the 3-position has been
reported.16
30. Loreto, M. A.; Migliorini, A.; Tardella, P. A.; Gambacorta, A. Eur. J. Org. Chem.
2007, 14, 2365.
31. Barrett et al. have previously reported a similar amine promoted cyclisation to
form pyrrolidines from an acyclic bis-mesylate using benzylamine: Barrett, D.
References and notes
1. Elderfield, R. C.; Gilman, R. E. Phytochemistry 1972, 11, 339; Ghedira, K.; Zeches-
Hanrot, M.; Richard, B.; Massiot, G.; Le Men-Oliver, L.; Sevener, T.; Goh, S. H.
Phytochemistry 1988, 27, 3955; Wong, W. H.; Lim, P. B.; Chuah, C. H. Phyto-
chemistry 1996, 41, 313.
2. Cui, C. B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651; Cui, C. B.; Kakeya,
H.; Osada, H. J. Antibiot. 1996, 49, 832.