Scheme 5
.
Synthesis of Bicyclic Pipecolic Acid 18
Scheme 6. Synthesis of N-Boc-bicycloproline 20
biological activities.20 Further applications of this methodol-
ogy are currently being studied in our laboratories.
treated first with BH3·THF to afford saturated derivative 17,
which was further hydrogenated to afford trans-fused bicyclic
pipecolic acid 18.15
Alternatively, allenylamine 13 was subjected to a gold(I)-
catalyzed intramolecular hydroamination reaction16,17 which
proceeded uneventfully to produce tricyclic compound 1918
(Scheme 6). Finally, hydrogenation of 19 and N-Boc protec-
tion of the resulting amino acid afforded bicycloproline
derivative 20.19
Acknowledgment. We thank the Ministerio de Educacio´n
y Ciencia (CTQ2007-61462) and Generalitat Valenciana
(GVPRE/2008/013) for their financial support. N.M. thanks
the Universidad de Valencia for a predoctoral fellowship,
and J.L.A. thanks the MEC for a Ramo´n y Cajal research
contract.
Supporting Information Available: Experimental pro-
cedures and NMR spectra for all new compounds, as well
as crystallographical data for compound 7. This material is
In conclusion, an efficient access to cyclic and bicyclic
amino acids has been achieved using as key synthetic step
the intramolecular addition of allyl- or propargylsilanes to
an iminium ion. The target compounds represent an attractive
group of conformationally constrained amino acids that could
be incorporated into peptidomimetic structures with potential
OL1010246
(20) For examples, see: (a) Palmer, J. T.; Bryant, C.; Wang, D.-X.; Davis,
D. E.; Setti, E. L.; Rydzewski, R. M.; Venkatraman, S.; Tian, Z.-Q.; Burrill,
L. C.; Mendonca, R. V.; Springman, E.; McCarter, J.; Chung, T.; Cheung,
H.; Janc, J. W.; McGrath, M.; Somoza, J. R.; Enriquez, P.; Yu, Z. W.;
Strickley, R. M.; Liu, L.; Venuti, M. C.; Percival, M. D.; Falgueyret, J.-P.;
Prasit, P.; Oballa, R.; Riendeau, D.; Young, R. N.; Wesolowski, G.; Rodan,
S. B.; Johnson, C.; Kimmel, D. B.; Rodan, G. J. Med. Chem. 2005, 48,
7520–7534. (b) Sheppeck, J. E.; Gilmore, J. L.; Yang, A.; Chen, X.-T.;
Xue, C.-B.; Roderick, J.; Liu, R.-Q.; Covington, M. B.; Decicco, C. P.;
Duan, J. J.-W. Bioorg. Med. Chem. Lett. 2007, 17, 1413–1417. (c) Maltais,
F.; Jung, Y. C.; Chen, M.; Tanoury, J.; Perni, R. B.; Mani, N.; Laitinen,
L.; Huang, H.; Liao, S.; Gao, H.; Tsao, H.; Block, E.; Ma, C.; Shawgo,
R. S.; Town, C.; Brummel, C. L.; Howe, D.; Pazhanisamy, S.; Raybuck,
S.; Namchuk, M.; Bennani, Y. L. J. Med. Chem. 2009, 52, 7993–8001.
See also ref 19c.
(17) For a recent article combining both iminium ion additions and gold-
catalyzed hydroaminations, see: Breman, A. C.; Dijkink, J.; van Maarseveen,
J. H.; Kinderman, S. S.; Hiemstra, H. J. Org. Chem. 2009, 74, 6327–6330
(18) In contrast, a similar hydroamination protocol was unsuccessful
using vinylic derivative 6a.
.
(19) For a previous synthesis of (+)-20, see: (a) Ranatunga, S.; Del
Valle, J. R. Tetrahedron Lett. 2009, 50, 2464–2466. For the synthesis of
other bicycloproline derivatives, see: (b) Turner, P. G.; Donohoe, T. J.;
Cousins, R. P. C. Chem. Commun. 2004, 1422–1423. (c) Yip, Y.; Victor,
F.; Lamar, J.; Johnson, R.; Wang, Q. M.; Barket, D.; Glass, J.; Jin, L.; Liu,
L.; Venable, D.; Wakulchik, M.; Xie, C.; Heinz, B.; Villarreal, E.; Colacino,
J.; Yumibe, N.; Tebbe, M.; Munroe, J.; Chen, S.-H. Bioorg. Med. Chem.
Lett. 2004, 14, 251–256. (d) Casabona, D.; Jime´nez, A. I.; Cativiela, C.
Tetrahedron 2007, 63, 5056–5061.
Org. Lett., Vol. 12, No. 13, 2010
3017