C O M M U N I C A T I O N S
Kozlowski (UPenn), Franziska Scho¨nebeck (ETH-Zu¨rich), and John
A. Kowalski (GlaxoSmithKline) for helpful discussions.
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
References
(1) (a) Ito, H.; Taguchi, T. Chem. Soc. ReV. 1999, 28, 43–50. (b) Hiersemann,
M.; Abraham, L. Eur. J. Org. Chem. 2002, 9, 1461–1471. (c) Hiersemann,
M., Nubbemeyer, U., Eds. The Claisen Rearrangment; Wiley-VCH:
Weinheim, Germany, 2007.
(2) (a) Maruoka, K.; Banno, H.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112,
7791–7793. (b) Yoon, T. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001,
123, 2911–2912.
(3) Abraham, L.; Czerwonka, R.; Hiersemann, M. Angew. Chem., Int. Ed. 2001,
40, 4700–4703.
(4) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 9228–9229.
(5) (a) Coates, R. M.; Shah, S. K.; Mason, R. W. J. Am. Chem. Soc. 1982,
104, 2198–2208. (b) Coates, R. M.; Hobbes, S. J. J. Org. Chem. 1984, 49,
140–152. (c) Coates, R. M.; Rogers, B. D.; Hobbs, S. J.; Peck, D. R.;
Curran, D. P. J. Am. Chem. Soc. 1987, 109, 1160–1170.
(6) For related reactions thought to proceed by Claisen rearrangement, see:
(a) Dolby, L. J.; Elliger, C. A.; Esfandri, S.; Marshall, K. S. J. Org. Chem.
1968, 33, 4508–4511. (b) Clarke, D. G.; Crombie, L.; Whiting, D. A.
J. Chem. Soc., Perkin Trans. 1 1974, 1007–1015.
(7) (a) Bruice, T. C.; Kundu, N. G. J. Am. Chem. Soc. 1966, 88, 4097–4098.
(b) Lienhard, G. J. Am. Chem. Soc. 1966, 88, 5642–5649. (c) Owen, T. C.;
Richards, A. J. Am. Chem. Soc. 1987, 109, 2520–2521. (d) Owen, T. C.;
Harris, J. N. J. Am. Chem. Soc. 1990, 112, 6136–6137.
(8) (a) Chow, Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126–8127.
(b) Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873–3876.
(9) (a) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004,
126, 9518–9519. (b) Zeitler, K. Org. Lett. 2006, 8, 637–640.
(10) (a) Khaleeli, N.; Li, R.; Townsend, C. A. J. Am. Chem. Soc. 1999, 121,
9223–9224. (b) Merski, M.; Townsend, C. A. J. Am. Chem. Soc. 2007,
129, 15750–15751.
(11) (a) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453–2456. (b)
Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798–13799. (c)
Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796–13797. (d) De
Sarkar, S.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190–
1191.
(12) (a) Mascarenas, J. L.; Wender, P. A. Tetrahedron Lett. 1992, 33, 2115–
2118. (b) McDonald, F. E.; Wender, P. A. J. Am. Chem. Soc. 1990, 112,
4956–4958. (c) Mascarenas, J. L.; Wender, P. A. J. Org. Chem. 1991, 56,
6267–6269. (d) Xiong, X.; Pirrung, M. X. Org. Lett. 2008, 10, 1151–1154.
(13) Wender, P. A.; D’Angelo, N.; Elitzin, V. I.; Ernst, M.; Jackson-Ugueto,
E. E.; Kowalski, J. A.; McKendry, S.; Rehfeuter, M.; Sun, R.; Voigtlaender,
D. Org. Lett. 2007, 9, 1829–1832.
(14) (a) Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 16162–
16163. (b) Akiyama, K.; Mikami, K. Tetrahedron Lett. 2004, 45, 7217–
7220.
Figure 1. Possible mechanistic pathways for NHC-catalyzed annulation.
(15) (a) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007,
9, 371–374. (b) Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew.
Chem., Int. Ed. 2008, 47, 8727–8730. (c) Inoue, H.; Higashiura, K. J. Chem.
Soc., Chem. Commun. 1980, 549–550.
reactions.7,25 These hydrates are stable under acidic conditions and
require general base catalysis to give hydrolysis products. This may
explain the cleaner and higher yielding outcome of this reaction under
our acidic conditions. The reaction is relatively insensitive to sterics;
an ortho,ortho-dichloro derivative is competitive with its ortho,para-
isomer, which would not be expected in the conjugate addition pathway
(see Supporting Information).26 Finally, the excellent enantioselectivity
is best rationalized by a reversible, but stereochemically determining,
1,2-addition adjacent to the chiral triazolium to give the Claisen
precursor. In contrast, a C-C bond forming conjugate addition would
be an irreversible stereochemically determining step.
(16) Struble, J. R.; Kaeobamrung, J.; Bode, J. W. Org. Lett. 2008, 10, 957–
960.
(17) (a) Imidazolinium salts substituted at the 2-position, which cannot form
carbenes, have been employed as catalyzed for aza-Diels Alder reactions.
In this case the salts are thought to act as Lewis acids: Jurcik, V.; Wilhelm,
R. Org. Biomol. Chem. 2005, 3, 239–244. (b) For a recent report on the
use of imidazolium salts for acid catalyzed acetylations, see: Myles, L.;
Gore, R.; Spula´k, M.; Gathergood, N.; Connon, S. J. Green Chem. 2010,in
press (DOI: 10.1039/c003301d).
(18) For an alternative mechanism for the addition of azolium salts to aldehydes,
see: Crane, E. J., III; Washabaugh, M. W. Bioorg. Chem. 1991, 19, 351–
368.
(19) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131,
14176–14177.
(20) Townsend has postulated a conjugate addition to an R,ꢀ-unsaturated acyl
azolium in the biosynthesis of clavulanic acid, see ref 10.
(21) White, M. J.; Leeper, F. J. J. Org. Chem. 2001, 66, 5124–5131.
(22) Noyce, D. S.; Pollack, R. M. J. Am. Chem. Soc. 1969, 91, 119–214.
(23) See the Supporting Information for the derivation of this rate law.
(24) Hydroxamic acids are known to be excellent nucleophiles for conjugate
additions, see: (a) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G.-L.; Co´rdova,
A. Chem. Commun. 2007, 849–851. (b) Yamagiwa, N.; Qin, H.; Matsunaga,
S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13419–13427.
(25) Owen, T. C. J. Heterocyclic Chem. 1990, 27, 987–990.
(26) Usera, A. R.; Posner, G. H. J. Org. Chem. 2007, 72, 2329–2334.
(27) For our work on other enantioselective tandem NHC-catalyzed reactions,
see: (a) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc.
2007, 129, 3520–3521. (b) Kaeobamrung, J.; Bode, J. W. Org. Lett. 2009,
11, 677–680. (c) He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130,
418–419.
Although we cannot completely rule out a short-lived enolate-acyl
azolium ion pair, our results, including the activation entropy, are
consistent with the detailed studies of Coates and Curran on the related
Claisen rearrangement of 2-alkoxy-substituted vinyl ethers. More
importantly, these studies provide a new mode of substrate activation
unique to chiral N-heterocyclic carbenes and, via their ability to access
multiple catalytically generated reactive species in a tandem fashion,27
a pathway to induce high levels of enantioselectivity and provide
solution to catalyst turnover in a catalytic Claisen manifold.
Acknowledgment. We are grateful to NIGMS (National Institutes
of Health, GM-079339), the National Science Foundation (CHE-
0449587), and Bristol Myers Squibb for support of this research. J.K.
is a graduate fellow of the Royal Thai Government. We thank Marisa
JA103631U
9
8812 J. AM. CHEM. SOC. VOL. 132, NO. 26, 2010