Notes and references
z Crystal data for 6a C64H52N2S5:9 crystals were grown by slowly
diffusing dry n-hexane over a chloroform solution of 6a. Green
rectangular, monoclinic, space group P21/n, a = 14.6226(29) A,
b
= 15.0918(30) A, c = 15.9295(32) A, a = 90.001, b =
114.978(30)1, g = 90.001, V = 3186.6(13) A3, T = 293(2) K,
Z = 2, m(Mo-Ka) = 0.218 mmꢀ1, F(000) = 1060. 45977 reflections
were measured, of which 5924 were unique (Rint) = 0.0430, R1 =
0.0948, wR2 = 0.2006, final R1 (I > 2s(I))=0.0843, wR2 = 0.1933,
GOF on F2 = 1.047. CCDC 694219. The S3 atom is in positional
disorder and refined with 0.5 occupancy factor, where two independent
molecules are overlapped with opposite orientation.
Scheme 2 Synthesis of fused heptaphyrin.
1 (a) J. L. Sessler, A. Gebauer and S. J. Weghorn, in The
Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and
R. Guilard, Academic Press, San Diego, 1999, vol. 2, pp. 55–124;
(b) H. Rath, J. Sankar, V. PrabhuRaja, T. K. Chandrashekar,
A. Nag and D. Goswami, J. Am. Chem. Soc., 2005, 127,
11608–11609; (c) X.-J. Zhu, S.-T. Fu, W.-K. Wong, J.-P. Guo
and W.-Y. Wong, Angew. Chem., Int. Ed., 2006, 45, 3150–3154;
(d) J. L. Sessler, J. M. Davis, V. Kral, T. Kimbrough and V. Lynch,
Org. Biomol. Chem., 2003, 1, 4113–4123; (e) D. Wu,
A. B. Descalzo, F. Weik, F. Emmerling, Z. Shen, X.-Z. You and
K. Rurack, Angew. Chem., Int. Ed., 2008, 47, 193–197.
2 (a) R. Misra and T. K. Chandrashekar, Acc. Chem. Res., 2008, 41,
265–279; (b) A. Srinivasan and H. Furuta, Acc. Chem. Res., 2005,
38, 10–20.
3 (a) J.-Y. Shin, H. Furuta and A. Osuka, Angew. Chem., Int. Ed.,
2001, 40, 619–621; (b) S. Mori, J. Shin, S. Shimizu, F. Ishikawa,
H. Furuta and A. Osuka, Chem.–Eur. J., 2005, 11, 2417–2425;
(c) M. Suzuki, R. Taniguchi and A. Osuka, Chem. Commun., 2004,
2682–2683; (d) C.-H. Hung, J.-P. Jong, M.-Y. Ho, G.-H. Lee and
S.-M. Peng, Chem.–Eur. J., 2002, 8, 4542–4548; (e) S. Saito and
A. Osuka, Chem.–Eur. J., 2006, 12, 9095–9102; (f) I. Gupta,
A. Srinivasan, T. Morimoto, M. Toganoh and H. Furuta, Angew.
Chem., Int. Ed., 2008, 47, 4563–4567; (g) S. Gokulnath and
T. K. Chandrashekar, Org. Lett., 2008, 10, 637–640.
4 (a) P. K. Panda, Y.-J. Kang and C.-H. Lee, Angew. Chem., Int. Ed.,
2005, 44, 4053–4055; (b) D.-G. Cho, P. Plitt, S. K Kim, V. Lynch,
S.-J. Hong, C.-H. Lee and J. L. Sessler, J. Am. Chem. Soc., 2008,
130, 10502–10503.
5 (a) J. Frey, A. D. Bond and A. B. Holmes, Chem. Commun., 2002,
2424–2425; (b) R. P. Ortiz, M. C. R. Delgado, J. Casado,
V. Hernandez, O.-K. Kim, H. Y. Woo and J. T. Lopez Navarrete,
J. Am. Chem. Soc., 2004, 126, 13363–13376; (c) M. Mazzeo,
V. Vitale, F. D. Sala, M. Anni, G. Barberalla, L. Favaretto,
G. Sotgiu, R. Cingoalani and G. Gigli, Adv. Mater., 2005, 17,
34–39.
Fig. 3 1H NMR spectrum of 10 in the downfield region in CDCl3 (for
labeling (a–f) see Scheme 2).
band on fusion (6 nm for mono-fused (6a) and 10 nm for
doubly fused (7a)), (ii) the increase in the molar extinction
coefficient by 4 times upon fusion in rubyrins (6, 7),10 and
the 1.5 times increase in fused heptaphyrins (10),10 (iii) the
increase in planarity of 10 relative to 11, (as reflected by
1H NMR) and (iv) the dramatic downfield shift of a, a0
protons of 119a from ꢀ0.6 ppm to 10.6 ppm in 10.
In conclusion we have synthesized a new range of mono and
doubly fused core-modified expanded porphyrins containing
DTT cores. We also demonstrated that fused expanded
porphyrins can be designed by choosing appropriate precursors.
In rubyrins fusion resulted in increased aromaticity, probably
due to their flat structure. By introducing fusion, we were also
able to restrict the conformation of the heptaphyrin. Possibly,
fusion can be used as a tool for attaining planarity/rigidity in
larger expanded porphyrins. Research in this direction is
underway.
6 A. Srinivasan, V. G. Anand, S. J. Narayanan, B. Sridevi,
S. K. Pushpan, M. Ravikumar and T. K. Chandrashekar, Angew.
Chem., Int. Ed. Engl., 1997, 36, 2598–2601.
7 SHELXTL-PC Package, Bruker Analytical X-ray Systems,
Madison, WI, 1998.
8 (a) S. Shimizu, R. Taniguchi and A. Osuka, Angew. Chem., Int.
Ed., 2005, 44, 2225–2229; (b) S. J. Narayanan, B. Sridevi,
T. K. Chandrashekar, A. Vij and R. Roy, J. Am. Chem. Soc.,
1999, 121, 9053–9068.
The authors thank Prof. Singh U P, IIT Roorke for single
crystal X-ray data collection. T K C thanks the Department
of Science and Technology (DST), India for J C Bose
fellowship. We greatly acknowledge Dr E. Suresh, CSMCRI–
CSIR, Bhavnagar, for useful discussion on crystal structure
analysis.
9 (a) V. G. Anand, S. K. Pushpan, A. Srinivasan, S. J. Narayanan,
B. Sridevi, T. K. Chandrashekar, R. Roy and B. S. Joshi, Org.
Lett., 2000, 2, 3829–3832; (b) B. S. Joshi, V. G. Anand,
S. K. Pushpan, A. Srinivasan, T. K. Chandrashekar and R. Roy,
J. Porphyrins Phthalocyanines, 2002, 6, 410–422; (c) V. G. Anand,
S. K. Pushpan, S. Venkatraman, S. J. Narayanan, A. Dey,
T. K. Chandrashekar, R. Roy, B. S. Joshi, S. Deepa and
G. N. Sastry, J. Org. Chem., 2002, 67, 6309–6319.
10 The electronic spectral data for 6a, 7a and 10 are as follows: 6a.
UV-Vis (CH2Cl2) [lmax (nm) (e ꢂ 10ꢀ5)]: 517 (6.10), 536 (3.10), 606
(0.09), 659 (0.30), 711 (1.30), 822 (0.05); (CH2Cl2/TFA): 538 (4.70),
559 (3.40), 783(0.30) and 831(1.00). 7a. UV-Vis (CH2Cl2)
[lmax (nm) (e ꢂ 10ꢀ5)]: 513 (3.80), 540 (2.10), 606 (0.09), 665
(0.17), 710 (0.82), 800 (0.06); (CH2Cl2/TFA): 535 (2.40), 566 (1.64),
766 (0.17), 843 (0.77). 10. UV-Vis (CH2Cl2) [lmax (nm) (e ꢂ 10ꢀ5)]:
553 (2.00), 579 (1.38), 797 (0.70); (CH2Cl2/TFA): 613 (1.60), 860
(0.12), 933 (0.70).
Fig. 4 Effect of fusion: conformational restriction.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 5915–5917 | 5917