Green Chemistry
Paper
Chem., 2016, 14, 6611; (b) M. Baumann, I. R. Baxendale, 23 M. Tsiang, G. C. Jones, J. Goldsmith, A. Mulato, D. Hansen,
S. V. Ley and N. Nikbin, Beilstein J. Org. Chem., 2011, 7, 442;
(c) M. Baumann and I. R. Baxendale, Beilstein J. Org. Chem.,
2013, 9, 2265; (d) Progress in Heterocyclic Chemistry, ed.
G. W. Gribble and J. A. Joule, Academic Press, Elsevier,
E. Kan, L. Tsai, R. A. Bam, G. Stepan, K. M. Stray,
A. Niedziela-Majka, S. R. Yant, H. Yu, G. Kukolj, T. Cihlar,
S. E. Lazerwith, K. L. White and H. Jin, Antimicrob. Agents
Chemother., 2016, 60, 7086.
2012, vol. 24; (e) J. A. Joule and K. Mills, Heterocyclic 24 Y. M. Choi and K. H. Kim, Korean J. Pain, 2015, 28, 4.
Chemistry at a Glance, Blackwell Publishing, Oxford, UK, 25 R. Schlichter, V. Rybalchenko, P. Poisbeau, M. Verleye and
2007; (f) A. Yu. Rulev and A. R. Romanov, RSC Adv., 2016,
6, 1984.
6 E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem.,
2014, 57, 10257.
7 For recent reviews, see: (a) Fluorine in Heterocyclic
Chemistry, ed. V. G. Nenajdenko, Springer, 2014, vol. 1–681
J.-M. Gillardin, Neuropharmacology, 2000, 39, 1523.
26 A. Hamon, A. Morel, B. Hue, M. Verleye and J.-M. Gillardin,
Neuropharmacology, 2003, 45, 293.
27 (a) H. A. Kirst, Drugs Today, 1995, 31, 89; (b) R. N. Brogden
and D. H. Peters, Drugs, 1994, 48, 599; (c) G. P. Dinos,
Br. J. Pharmacol., 2017, 174, 2967.
pp, vol. 2–760 pp; (b) Fluorinated Heterocyclic Compounds: 28 K. N. Moore, L. P. Martin, D. M. O’Malley, U. A. Matulonis,
Synthesis, Chemistry, and Applications, ed. V. A. Petrov,
Wiley, Hoboken, 2009; (c) Fluorinated Heterocycles, ed. A.
J. A. Konner, I. Vergote, J. F. Ponte and M. J. Birrer, Future
Oncol., 2018, 14, 123.
Gakh and K. L. Kirk, Oxford University Press, Oxford, 2008. 29 A. Chanda and V. V. Fokin, Chem. Rev., 2009, 109, 725.
8 L. Lazar and F. Fulop, 1,3-Oxazines and their Benzo 30 S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb
Derivatives, in Comprehensive Heterocyclic Chemistry III, ed.
A. R. Katritzky, Ch. A. Ramsden, E. F. V. Scriven and R. J. K.
Taylor, Elsevier, 2008, vol. 8, p. 374.
9 S. L. Gaonkar, V. U. Nagaraj and S. Nayak, Mini-Rev. Org.
Chem., 2019, 16, 43.
10 (a) T. J. Sindhu, D. A. Sonia, V. Girly, C. Meena, A. R. Bhat
and K. Krishnakumar, Int. J. Pharm. Sci. Res., 2013, 4, 134–
143; (b) P. Liu, M. Lei and L. Hu, Tetrahedron, 2013, 69,
10405.
11 R. L. Sawant, M. S. Mhaske and J. B. Wadekar, Int. J. Pharm.
Pharm. Sci., 2012, 4, 320.
12 H. S. Mosher, M. B. Frankel and M. Gregory, J. Am. Chem.
Soc., 1953, 75, 5326.
13 C. Altomare, A. Carotti, G. Casini and M. Ferappi,
J. Heterocycl. Chem., 1984, 21, 777.
14 T. Sauvaître, M. Barlier, D. Herlem, N. Gresh, A. Chiaroni,
D. Guenard and C. Guillou, J. Med. Chem., 2007, 50, 5311.
15 B. D. Palmer, A. M. Thompson, H. S. Sutherland, A. Blaser,
and K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44,
3275.
31 (a) T. Kitanosono, K. Masuda, P. Xu and S. Kobayashi,
Chem. Rev., 2018, 118, 679; (b) B. H. Lipshutz, J. Org.
Chem., 2017, 82, 2806; (c) S. Y. Lee and C.-H. Cheon, J. Org.
Chem., 2018, 83, 13036; (d) R. N. Butler and A. G. Coyne,
Chem. Rev., 2010, 110, 6302; (e) A. Manna and A. Kumar,
J. Phys. Chem., 2013, 117, 2446; (f) W. Guo, X. Liu, Y. Liu
and C. Li, ACS Catal., 2018, 8, 328; (g) D. K. Romney,
F. H. Arnold, B. H. Lipshutz and C.-J. Li, J. Org. Chem.,
2018, 83, 7319; (h) R. N. Butler and A. G. Coyne, Org.
Biomol. Chem., 2016, 14, 9945.
32 (a) M. Shimizu and T. Hiyama, Angew. Chem., Int. Ed., 2005,
44, 214; (b) S. V. Druzhinin, E. S. Balenkova and
V. G. Nenajdenko, Tetrahedron, 2007, 63, 7753;
(c) V. G. Nenajdenko, A. V. Sanin and E. S. Balenkova,
Molecules, 1997, 186; (d) A. Yu. Rulev, Eur. J. Org. Chem.,
2018, 3609.
I. Kmentova, S. G. Franzblau, B. Wan, Y. Wang, Z. Ma and 33 A. R. Romanov, A. Yu. Rulev, I. A. Ushakov,
W. A. Denny, J. Med. Chem., 2010, 53, 282.
16 Z. Tang, W. Chen, Z. Zhu and H. Liu, J. Heterocycl. Chem.,
2011, 48, 255.
17 T. J. Sindhu, S. D. Arikkatt, V. Girly, M. Chandran,
A. R. Bhat and K. Krishnakumar, Int. J. Pharm. Sci. Res.,
2013, 4, 134.
V. M. Muzalevskiy and V. G. Nenajdenko, Mendeleev
Commun., 2014, 24, 269.
34 A. R. Romanov, A. Yu. Rulev, I. A. Ushakov,
V. M. Muzalevskiy and V. G. Nenajdenko, Eur. J. Org.
Chem., 2017, 4121.
35 V. M. Muzalevskiy, A. A. Iskandarov and V. G. Nenajdenko,
J. Fluorine Chem., 2018, 214, 13.
18 R. Mueller, Y.-X. Li, A. Hampson, S. Zhong, C. Harris,
C. Marrs, S. Rachwal, J. Ulas, L. Nielsson and G. Rogers, 36 V. M. Muzalevskiy, M. N. Mamedzade, V. A. Chertkov,
Bioorg. Med. Chem. Lett., 2011, 21, 3923.
19 H. Hilpert, R. Narquizian, E. Pinard, A. Polara, M. Rogers-
V. A. Bakulev and V. G. Nenajdenko, Mendeleev Commun.,
2018, 28, 17.
Evans, T. Woltering and W. Wostl, WO Patent 156284, 2012; 37 V. M. Muzalevskiy, A. Yu. Rulev, A. R. Romanov,
Chem. Abstr., 2012, 158, 11628.
E. V. Kondrashov, I. A. Ushakov, V. A. Chertkov and
20 S. D. Young, S. F. Britcher, L. O. Tran, L. S. Payne,
V. G. Nenajdenko, J. Org. Chem., 2017, 82, 7200.
W. C. Lumma, T. A. Lyle, J. R. Huff, P. S. Anderson, 38 K. V. Belyaeva, L. P. Nikitina, A. V. Afonin,
D. B. Olsen and S. S. Carroll, Antimicrob. Agents Chemother.,
1995, 39, 2602.
21 E. De Clercq, J. Clin. Virol., 2004, 30, 115.
22 S. Min, I. Song, J. Borland, S. Chen, Y. Lou, T. Fujiwara and
S. C. Piscitelli, Antimicrob. Agents Chemother., 2010, 54, 254.
A. V. Vashchenko, V. M. Muzalevskiy, V. G. Nenajdenko and
B. A. Trofimov, Org. Biomol. Chem., 2018, 16, 8038.
39 B. A. Trofimov, K. V. Belyaeva, L. P. Nikitina, A. V. Afonin,
A. V. Vashchenko, V. M. Muzalevskiy and V. G. Nenajdenko,
Chem. Commun., 2018, 54, 2268.
This journal is © The Royal Society of Chemistry 2019
Green Chem., 2019, 21, 6353–6360 | 6359