3
Scheme 2. Conditions: a) (i) H2SO4, dry MeOH, rt, 12 h; (ii)
different acids. This pathway was shown to be applicable for
°
K2CO3, BnBr, acetone, 56 C, 15 h, 95% (over 2 steps) ; b) AD-
the synthesis of many compounds containing tetrahydrofuran
moiety.
mix-β, methane sulfonamide in t-BuOH-H2O, rt, 12 h, 90%; c)
2,2-dimethoxy propane, acetone, BF3.OEt2, 2 h, 90%; d) LAH,
°
THF, 0 C, 1 h, 85%; e) (i) (COCl)2, DMSO, Et3N, CH2Cl2, -78
Acknowledgments:
°
°C, 3h; (ii) Ph3P=CH2, THF, 0 C, 4h, 80% (over 2 steps) ; f)
A.R.D thanks UGC, G.R thanks CSIR, New Delhi for
Research fellowship and we would like to thank CSIR for
financial support in the form of ORIGIN (CSC-0108), DENOVA
(CSC-0205). The authors also thank Director, CSIR-IICT for the
constant support and encouragement.
OsO4, NMO, acetone:H2O (4:1), 0 °C, 3 h 80%; g) Acid, CH2Cl2,
0 °C, 30min.
The mechanism for the formation of products 17 and 18
involves shifting of acetonide followed by cyclisation in presence
of acid (Scheme 3). The benzylic C-O bond was cleaved in
presence of acid giving rise to stable benzylic carbocation which
undergoes cyclisation with the free primary hydroxy group
leading to tetrahydrofuran system having trans configuration as
major.
References:
1.
Hanessian, S.; Pemet, A. G. Adv. Carbo. Chem. Biochem. 1976, 33,
111-188. (b) Postema, M. H. D. Tetrahedron 1992, 48, 8545-8599.
(a) Lerch, U.; Burdon, M.G.; Moffat, J. G. J. Org. Chem. 1971, 36,
1507-1513; (b) Brown, D. M.; Burdon, M.G.; Slatcher, R. P. J. Chem.
Soc., Section C 1968, 1051-1053; (c) Shapiro, R.; Chambers, R. W. J.
Am. Chem. Soc. 1961, 83, 3920-3921.
2.
3.
(a) Kalvoda, L; Farkas, J; Sorm, F. Tetrahedron Lett. 1970, 11, 2297-
2300; (b) Trummlitz, G.; Moffat, J. G. J. Org. Chem. 1973,38, 1841-
1845; (c) Barton, D. H. R.; Ramesh, M. J. Am. Chem. Soc. 1990, 112,
891-892.
4.
5.
6.
Buchanan, J. G.; Jumaah, A. O.; Kerr, G.; Talekar, R. R.; Wightman, R.
H. J. Chem. Soc., Perkins Trans. 1 1991, 1077.
Farkas, J.; Flegelova, Z; Sorm, F. Tetrahedron Lett. 1972, 20, 2279-
2282.
Scheme 3. Plausible Reaction Pathway.
(a) Kool, E. T. Acc. Chem. Res. 2002, 35, 936- 943. (b) Krueger, A. T.;
Lu, H. G.; Lee, A. H. F.; Kool, E. T. Acc. Chem. Res. 2007, 40, 141-
150. (c) Henry, A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol. 2003,
7, 727-733. (d) Rist, M. J.; Marino, J. P. Curr. Org. Chem. 2002, 6, 775-
793.
The deprotection of the compound 17 with 1N HCl in
MeOH afforded the compound 19. Stirring of the compound 19
with PtO2 in MeOH under hydrogen for 2 h and treatment of the
crude with Ac2O and pyridine gave the compound 9. The spectral
data of compound 9 was in good agreement with reported values
(Scheme 4).13b
7.
(a) Brotschi, C.; Mathis, G.; Leumann, C. J. Chem. Eur. J. 2005, 11,
1911-1923. (b) Lai, J. S.; Qu, J.; Kool, E. T. Angew. Chem. Int. Ed.
2003, 42, 5973-5977.
8. (a) Berger, M.; Luzzi, S. D.; Henry, A. A.; Romesberg, F. E. J. Am
Chem. Soc. 2002, 124, 1222-1226. (b) Henry, A. A.; Yu, C. Z.;
Romesberg, F. E. J. Am. Chem. Soc. 2003, 125, 9638-9646. (c) Lai, J.
S.; Kool, E. T. J. Am. Chem. Soc. 2004, 126, 3040-3041. (d) Matsuda,
S.; Romesberg, F. E. J. Am. Chem. Soc. 2004, 126, 14419-14427. (e)
Dupradeau, F. Y.; Case, D. A.; Yu, C. Z.; Jimenez, R.; Romesberg, F.
E. J. Am. Chem. Soc. 2005, 127, 15612-15617. (f) Lee, A. H. F.; Kool,
E. T. J. Org. Chem. 2005, 70, 132-140. (g) Hwang, G. T.; Romesberg,
F. E. Nucleic Acids Res. 2006, 34, 2037-2045. (h) Leconte, A. M.;
Matsuda, S.; Romesberg, F. E. J. Am. Chem. Soc. 2006, 128, 6780-
6781. (i) Leconte, A. M.; Matsuda, S.; Hwang, G. T.; Romesberg, F. E.
Angew. Chem. Int. Ed. 2006, 45, 4326-4329. (j) Lee, A. H. F.; Kool, E.
T. J. Am. Chem. Soc. 2006, 128, 9219-9230. (k) Matsuda, S.; Henry, A.
A.; Romesberg, F. E. J. Am. Chem. Soc. 2006, 128, 6369-6375. (l)
Matsuda, S.; Leconte, A. M.; Romesberg, F. E. J. Am. Chem. Soc.
2007, 129, 5551-5557.
Scheme 4. Conditions: a) 1N HCl, MeOH, 0 °C, 30 min. b) (i)
PtO2, MeOH, H2 (30 psi), 2 h; (ii) Ac2O, Pyridine, 0 °C (98%
over 2 steps).
Conclusions:
In summary, an efficient and novel synthetic pathway
has been developed to synthesize peracetylated derivative of (-)-
gloeosporiol 9 from commercially available caffeic acid using
acid catalysed cyclisation which involves the migration of the
acetonide group and this reaction was studied in presence of