10.1002/asia.201700939
Chemistry - An Asian Journal
COMMUNICATION
purified by preparative thin-layer chromatography on silica gel with
petroleum ether and ethyl acetate to yield the pure product.
Acknowledgements
Scheme 2. Gram-scale reaction.
We are grateful to the National Natural Science Foundation of
China (No. 21402168), Scientific Research Foundation of Hunan
Provincial Education Department (No. 15B232) and Hunan 2011
Collaborative Innovation Center of Chemical Engineering &
Technology with Environmental Benignity and Effective
Resource Utilization for their support of our research.
Scheme 3. Radical inhibition experiment.
Keywords: trifluoromethylation • graphene oxide • metal-free •
initiator-free
addition of trifluoromethyl radical to arene occurred and
accessed the intermediate phenyl radical (I). The hydrogen
atom of phenyl radical was abstracted by the superoxide radical
to accomplish the aromatization reaction, and the target
molecule (T.M.) was achieved. Additionally, we thought that the
alkoxy group also benefits this transformation because of the
stabilization of radical intermediate (I).
[1]
̈
a) K. Muller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; b)
W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369; c) N. A.
Meanwell, J. Med. Chem. 2011, 54, 2529-2591; d) Y. Zhou, J. Wang, Z.
Gu, S. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok, K. Izawa, H. Liu,
̃
Chem. Rev. 2016, 116, 422-518.
[2]
a) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E.
́
́
̃
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432-2506; b) I. Ojima, Fluorine in Medicinal Chemistry and
Chemical Biology; Wiley-Blackwell: Oxford, U.K., 2009; c) S. Purser, P.
R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-
330; d) H. L. Yale, J. Med. Chem. 1958, 1, 121-133.
[3]
[4]
C. Alonso, E. M. de Marigorta, G. Rubiales, F. Palacios, Chem. Rev.
2015, 115, 1847-1935.
For selected review articles, see: a) J. Charpentier, N. Fruh, A. Togni,
Chem. Rev. 2015, 115, 650-682; b) O. A. Tomashenko, V. V. Grushin,
Chem. Rev. 2011, 111, 4475-4521. Other articles, see: c) T. Furuya, S.
A. Kamlet, T. Ritter, Nature 2011, 473, 470-477; d) M. Shang, S.-Z. Sun,
H.-L. Wang, B. N. Laforteza, H.-X. Dai, J.-Q. Yu, Angew. Chem. Int. Ed.
2014, 53, 10439-10442; e) X.-G. Zhang, H.-X. Dai, M. Wasa, J.-Q. Yu,
J. Am. Chem. Soc. 2012, 134, 11948-11951; f) A. Hafner, S. Bräse,
Angew. Chem. Int. Ed. 2012, 51, 3713-3715; g) X. Mu, T. Wu, H. Wang,
Y. Guo, G. Liu, J. Am. Chem. Soc. 2012, 134, 878-881; h) L. Chu, F.-L.
Qing, J. Am. Chem. Soc. 2012, 134, 1298-1304; i) X. Wang, L.
Truesdale, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3648-3649; j) G.
Shi, C. Shao, S. Pan, J. Yu, Y. Zhang, Org. Lett. 2015, 17, 38-41.
C.-L. Sun, Z.-J. Shi, Chem. Rev. 2014, 114, 9219-9280.
Scheme 4. Proposed mechanism for the GO-catalyzed trifluoromethylation of
arenes.
[5]
[6]
D. Wang, G.-J. Deng, S. Chen, H. Gong, Green Chem. 2016, 18, 5967-
5970.
In conclusion, a metal-free and initiator-free GO-catalyzed
[7]
a) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A.
Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P.
S. Baran, Nature 2012, 492, 95-99; b) D. A. Nagib, D. W. C. MacMillan,
Nature 2011, 480, 224-228; c) L. Li, X. Mu, W. Liu, Y. Wang, Z. Mi, C.-J.
Li, J. Am. Chem. Soc. 2016, 138, 5809-5812; d) T. Nishida, H. Ida, Y.
Kuninobu, M. Kanai, Nat. Commun. 2014, 5, 3387; e) Y. Ji, T. Brueckl,
R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond, P. S.
Baran, Proc. Natl. Acad. Sci. USA 2011, 108, 14411-14415; f) B.
Chang, H. Shao, P. Yan, W. Qiu, Z. Weng, R. Yuan, ACS
Sustainable Chem. Eng. 2017, 5, 334-341; g) J. C. Fennewald, B. H.
Lipshutz, Green Chem. 2014, 16, 1097-1100; h) L. Cui, Y. Matusaki, N.
Tada, T. Miura, B. Uno, A. Itoha, Adv. Synth. Catal. 2013, 355, 2203-
2207; i) Y.-D. Yang, K. Iwamoto, E. Tokunaga, N. Shibata, Chem.
Commun. 2013, 49, 5510-5512; j) M. S. Wiehn, E. V. Vinogradova, A.
Togni, J. Fluorine Chem. 2010, 131, 951-957.
direct C–H trifluoromethylation of arenes under safe conditions
is
described.
The
initial-free
process
of
radical
trifluoromethylation is promising. This strategy possesses
several advantages, such as being metal free, initiator free, safe,
and scalable. The other benefits include the use of readily
available CF3 source and the easy control of the reaction to
obtain the mono-trifluorinated product. Therefore, the proposed
method introduced a new field for GO-catalyzed chemistry.
Experimental Section
[8] J. Zhang, S. Chen, F. Chen, W. Xu, G. Deng, H. Gong, Adv. Synth. Catal.
2017, DOI: 10.1002/adsc.201700178.
A typical experimental procedure: A solution of arene (0.2 mmol), GO (20
mg), CF3SO2Na (3.0 equiv), and NH4NO3 (20 mol%) in ClCH2CO2Et (1
mL) was stirred in a sealed tube under air atmosphere at 100 °C for 12 h.
The reaction mixture was then filtered and washed with ethyl acetate.
Afterwards, the solvent was evaporated in vacuo. The residue was
[9]
For selected review articles, see: a) D. S. Su, G. Wen, S. Wu, F. Peng,
R. Schlögl, Angew. Chem. Int. Ed. 2017, 56, 936-964; b) P. Tang, G.
Hu, M. Li, D. Ma, ACS Catal. 2016, 6, 6948-6958; c) D. R. Dreyer, A. D.
Todd, C. W. Bielawski, Chem. Soc. Rev. 2014, 43, 5288-5301; d) C. Su,
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.