10.1002/anie.201915470
Angewandte Chemie International Edition
COMMUNICATION
monofunctional biarylamines under mild conditions. Furthermore, We thank the National Natural Science Foundation of China
the deprotection of the amino group was easy, which led to the
(Grant Nos. 21772239, 91856109, and 21901261) for financial
support.
formation of amine 11 in good yield. The amine 11 could be
transformed to phosphine 13,
a a
known ligand,[5c] via
bromination-cross coupling process. In these transformations,
the enantiosectivities of the reactions changed slightly. These
transformations indicated that the products are a good platform
molecule, which provides a convenient route for the synthesis of
a variety of valuable axially chiral compounds bearing an amino
group, a thio group or both amino and thio groups.
Keywords: axially chiral compounds · alkynes · thiolation ·
sulfide catalysis · synthetic methods
[1]
For selected reviews, see: a) M. C. Kozlowski, B. J. Morgan, E. C.
Linton, Chem. Soc. Rev. 2009, 38, 3193; b) G. Bringmann, T. Gulder, T.
A. M. Gulder, M. Breuning, Chem. Rev. 2011, 111, 563; c) A. Zask, J.
Murphy, G. A. Ellestad, Chirality 2013, 25, 265.
Me
[2]
a) Privileged chiral ligands and catalysts (Ed.: Q.-L. Zhou), Wiley-VCH,
Meinheim, 2011; For selected reviews, see: b) Y.-M. Li, F.-Y. Kwong,
W.-Y. Yu, A. S. C. Chan, Coord. Chem. Rev. 2007, 251, 2119; c) S.
Schenker, A. Zamfir, M. Freund, S. B. Tsogoeva, Eur. J. Org. Chem.
2011, 2209.
N
SR TMSOTf
+
RS
S
OiPr
H
N
N
TMS
Ar1
R'
NHTs
C11
+
Ms
Me
[3]
[4]
J. Kohno, Y. Koguchi, M. Nishio, K. Nakao, M. Kuroda, R. Shimizu, T.
Ohnuki, S. Komatsubara, J. Org. Chem. 2000, 65, 990.
III
TfO
For selected reviews, see: a) P. J. Guiry, C. P. Saunders, Adv. Synth.
Catal. 2004, 346, 497; b) M. Mellah, A. Voituriez, E. Schulz, Chem. Rev.
2007, 107, 5133; c) S. Otocha, M. Kwiatkowska, L. Madalińska, P.
Kiełbasiński, Chem. Rev. 2017, 117, 4147.
S
+
OiPr
SR
O
Ar1
p-Tol
N
H
I
Me
S
Ts
N
S
RS
MsHN
O
OTf
H
F
F
[5]
For selected examples, see: a) S. Vyskočil, M. Smrčina, V. Hanuš, M.
Polášek, P. Kočovský, J. Org. Chem. 1998, 63, 7738; b) J. J. Bürgi, R.
Mariȥ, M. Gatti, E. Drinkel, X. Luan, S. Blumentritt, A. Linden, R. Dorta,
Angew. Chem. Int. Ed. 2009, 48, 2768; c) T. Hoshi, K. Sasaki, S. Sato,
Y. Ishii, T. Suzuki, H. Hagiwara, Org. Lett. 2011, 13, 932.
O
O
iPr
F
S
O
Ar2 + TfOH
NHMs
Ar2
S
R
O
H
Ms
N
Ar1
Ar2
1
3
[6]
[7]
a) N. Vallavoju, S. Selvakumar, S. Jockusch, M. P. Sibi, J. Sivaguru,
Angew. Chem. Int. Ed. 2014, 53, 5604; b) S. Liu, K. Maruoka, S.
Shirakawa, Angew. Chem. Int. Ed. 2017, 56, 4819.
II
Ar1
For selected reviews, see: a) G. Bringmann, A. J. P. Mortimer, P. A.
Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed.
2005, 44, 5384; b) D. Zhang, Q. Wang, Coord. Chem. Rev. 2015, 286,
1; c) J. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem.
Soc. Rev. 2015, 44, 3418; d) G. Ma, M. P. Sibi, Chem. Eur. J. 2015, 21,
11644; e) Y.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534.
For selected examples, see: a) A. Bermejo, A. Ros, R. Fernández, J. M.
Lassaletta, J. Am. Chem. Soc. 2008, 130, 15798; b) X. Shen, G. O.
Jones, D. A. Watson, B. Bhayana, S. L. Buchwald, J. Am. Chem. Soc.
2010, 132, 11278; c) G. Xu, W. Fu, G. Liu, C. H. Senanayake, W. Tang,
J. Am. Chem. Soc. 2014, 136, 570.
Scheme 5. Possible mechanism.
On the basis of the previous studies,[16b-f,22h] a plausible
reaction pathway is depicted (Scheme 5). First, the electrophilic
sulfur reagent is activated by catalyst C11 to form intermediate I
under the assistance of Lewis acid. Intermediate I reacts with
substrate 1 to give thiirenium ion intermediate II with an acid-
derived anion bridge. Then, intermediate II may be further
converted to a chiral aza-vinylidene-quinone methide (aza-VQM)
intermediate III and regenerate the catalyst.[16b-f] The following
intramolecular hydroarylation on the intermediate III results in
axially chiral product 3. Both the amino groups on catalyst and
substrate are crucial in the enantiocontrol. When they are
protected by appropriate groups, proper hydrogen bonding can
lead to the best enantioselectivity of reaction. Not surprisingly,
when the amino group on substrate was replaced by methoxy or
methyl group, the reaction gave racemic products (see the
supplementary information). Furthermore, the reaction gave
messy products when changing the triple bond on substrate 1 to
a double bond. This result may be attributed to the absence of
the aza-VQM intermediate in the reaction.
In summary, we have developed a new strategy to construct
enantiopure axially chiral amino sulfides with various
substituents by chiral sulfide catalyzed enantioselective
electrophilic carbothiolation of alkynes. The yields were high and
the enantioselectivities of reactions were excellent. The obtained
products could be further converted into valuable axially chiral
compounds under mild conditions in simple steps. The further
applications of the formed axially chiral compounds are ongoing
in our laboratory.
[8]
[9]
For selected examples, see: a) H. Egami, T. Katsuki, J. Am. Chem. Soc.
2009, 131, 6082; b) L.-W. Qi, J.-H. Mao, J. Zhang, B. Tan, Nat. Chem.
2018, 10, 58; c) L.-W. Qi, S. Liꢀ, S.-H. Xiangꢀ, J. Wang, B. Tanꢀ, Nat.
Catal. 2019, 2, 314.
[10] For selected examples, see: a) S. Shirakawa, X. Wu, K. Maruoka,
Angew. Chem. Int. Ed. 2013, 52, 14200; b) K. Mori, Y. Ichikawa, M.
Kobayashi, Y. Shibata, M. Yamanaka, T. Akiyama, J. Am. Chem. Soc.
2013, 135, 3964; c) S. Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int. Ed.
2014, 53, 11041; d) S.-C. Zheng, Q. Wang, J. Zhu, Angew. Chem. Int.
Ed. 2019, 58, 9215.
[11] For selected examples, see: a) T. Osako, Y. Uozumi, Org. Lett. 2014,
16, 5866; b) R. J. Armstrong, M. D. Smith, Angew. Chem. Int. Ed. 2014,
53, 12822.
[12] a) F. Guo, L. C Konkol, R. J. Thomson, J. Am. Chem. Soc. 2011, 133,
18; b) V. S. Raut, M. Jean, N. Vanthuyne, C. Roussel, T. Constantieux,
C. Bressy, X. Bugaut, D. Bonne, J. Rodriguez, J. Am. Chem. Soc. 2017,
139, 2140; c) A. Link, C. Sparr, Angew. Chem. Int. Ed. 2018, 57, 7136.
[13] a) A. Link, C. Sparr, Angew. Chem. Int. Ed. 2014, 53, 5458; b) T.
Shibata, A. Sekine, A. Mitake, K. S. Kanyiva, Angew. Chem. Int. Ed.
2018, 57, 15862; c) F. Xue, T. Hayashi, Angew. Chem. Int. Ed. 2018,
57, 10525; d) K. Xu, W. Li, S. Zhu, T. Zhu, Angew. Chem. Int. Ed. 2019,
58, 17625.
[14] a) K. Zhao, L. Duan, S. Xu, J. Jiang, Y. Fu, Z. Gu, Chem, 2018, 4, 599;
b) M. Hou, R. Deng, Z. Gu, Org. Lett. 2018, 20, 5779; c) Q. Li, M.
Zhang, S. Zhan, Z. Gu, Org. Lett. 2019, 21, 6374; d) K. Zhu, Q. Fang, Y.
Wang, B. Tang, F. Zhang, ACS Catal. 2019, 9, 4951; e) L. Duan, K.
Zhao, Z. Wang, F.-L. Zhang, Z. Gu, ACS Catal. 2019, 9, 9852.
[15] a) Y.-H. Chen, L.-W. Qi, F. Fang, B. Tan, Angew. Chem. Int. Ed. 2017,
56, 16308; b) S. M. Maddox, G. A. Dawson, N. C. Rochester, A. B.
Recieved: automatically insert
Published online: automatically insert
Acknowledgements
This article is protected by copyright. All rights reserved.