38
N. Chitrapriya et al. / Journal of Molecular Structure 984 (2010) 30–38
[26] D. Mansuy, P. Battioni, J.-P. Battioni, Eur. J. Biochem. 184 (1989) 267.
[27] J. Custot, J.-L. Boucher, S. Vadon, C. Guedes, S. Dijols, M. Delaforge, D. Mansuy, J.
Biol. Inorg. Chem. 1 (1995) 73.
[28] A.I. Vogel, Text Book of Practical Organic Chemistry, 5th ed., Longman, London,
1989.
[29] N. Ahmed, J.J. Lewison, S.D. Robinson, M.F. Uttley, Inorg. Synth. 15 (1974) 48.
[30] R.A.S. Pelgado, W.Y. Lee, S.R. Choi, Y. Cho, M.J. Jun, Trans. Met. Chem. 16 (1991)
241.
[31] Bruker Advanced X-ray Solutions SMART for WNT/2000, Version 5.628, Bruker
AXS Inc., Madison, Wisconsin, USA, 1997–2002.
[32] Bruker Advanced X-ray Solutions SAINT, Version 6.45, Bruker AXS Inc.,
Madison, Wisconsin, USA, 1997–2003.
[33] Bruker Advanced X-ray Solutions SADABS in SAINT, Version 6.45, Bruker AXS
Inc., Madison, Wisconsin, USA, 1997-2003.
[34] G.M. Sheldrick, SHELXTL, Version 6.14, Bruker AXS, Inc, Madison, WI, 2003.
[35] S.C. Jakels, F. Farmery, E.K. Barfield N.J. Rose, D.H. Busch, Inorg. Chem. 11
(1972) 289.
[36] M.A. Greaney, C.L. Coyle, M.A. Harmer, A. Jordan, E.I. Stifel, Inorg. Chem. 28
(1989) 912.
to a rearrangement of the electron density from the oxime oxygen
to the oxime nitrogen making the latter donor very efficient in me-
tal ion coordination. In addition, the interaction of the complexes
with DNA was investigated by absorption spectroscopy, cyclic vol-
tammetry and thermal denaturation measurements. The results
indicate that the complexes do not intercalate between the DNA
base pairs. Most probably, the interaction of the complexes is
mainly electrostatic through the phosphate backbone of the DNA.
These results further supported by viscosity measurement. The
poor DNA-binding propensity of the complexes could be due to
the presence of triphenylphophine as a steric protector ligand.
DNA cleavage studies carried out with the complexes demonstrate
that the complexes are less efficient in promoting the cleavage of
plasmid DNA even in the presence sodium ascorbate. At high con-
centration, complexes 3 and 6 can effectively cleave the DNA in
presence of activating agent.
[37] E.S. Dodsworth, A.B.P. Lever, Chem. Phys. Lett. 124 (1986) 152.
[38] A. Cukurovali, E. Tas, Synth. React. Inorg. Met. – Org. Chem. 28 (3) (1998) 449.
[39] L.A. Epps, L.G. Marzilli, Inorg. Chem. 12 (1973) 1514.
[40] A.L. Crumbliss, P.L. Gaus, Inorg. Chem. 14 (11) (1975) 2745.
[41] L.F. Szczepura, J.G. Muller, C.A. Bessel, R.F. See, T.S. Janik, M.R. Churchill, K.J.
Takeuchi, Inorg. Chem. 31 (1992) 859.
Supplementary material
[42] N. Chitrapriya, V. Mahalingam, L.C. Channels, M. Zeller, F.R. Fronczek, K.
Natarajan, Inorg. Chim. Acta 361 (2008) 2841.
[43] R. Raveendran, S. Pal, Polyhedron 24 (2005) 57.
[44] M. Maji, M. Chatterjee, S. Ghosh, S.K. Chattopadhyay, B.-M. Wu, T.C.W. Mak, J.
Chem. Soc. Dalton Trans. 135 (1999).
[45] N. Chitrapriya, V. Mahalingam, M. Zeller, K. Natarajan, Polyhedron 27 (2008)
1573.
[46] E. Bermejo, A. Castineiras, D.X. West, Z. Naturforsch. 56B (2001) 369.
[47] J.D. Martin, K.A. Abboud, K.-H. Dahmen, Inorg. Chem. 37 (1998) 5811.
[48] S. Ganguly, V. Manivannan, A. Chakravorty, J. Chem. Soc. Dalton Trans. 146
(1998).
[49] S.A. Serron, C.M. Haar, S.P. Nolan, Organometallics 16 (1997) 5120.
[50] M. Poyatos, J.A. Mata, E. Falomir, R.H. Crabtree, E. Peris, Organometallics 22
(2003) 1110.
[51] M.A. Rankin, R. McDonald, M.J. Ferguson, M. Stradiotto, Angew. Chem. Int. Ed.
44 (2005) 3603.
[52] M. Calleri, G. Ferreris, D. Viterbo, Acta Crystallogr. 20 (1966) 73.
[53] L.E. Sutton, Spec. Publ. – Chem. Soc. 18 (1965).
CCDC 663251 and 632083 contain the supplementary crystallo-
graphic data for 1 and 2. These data can be obtained free of charge
the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or e-mail: depos-
it@ccdc.cam.ac.uk. Supplementary data associated with this article
can be found in the online version.
References
[1] V.Y. Kukushkin, D. Tudela, A.J.L. Pombeiro, Coord. Chem. Rev. 156 (1996) 333.
[2] V.Y. Kukushkin, A.J.L. Pombeiro, Coord. Chem. Rev. 181 (1999) 147.
[3] S. Ganguly, S. Karmakar, C.K. Pal, A. Chakravorty, Inorg. Chem. 38 (1999) 5984.
[4] E.A. Bruton, L. Brammer, F.C. Pigge, C.B. Aakeroy, D.S. Leinend, New J. Chem. 27
(2003) 1084.
[54] S.M. Morehouse, A. Polychronopoulou, G.J.B. Williams, Inorg. Chem. 19 (1980)
3558.
[5] M. Kurtoglu, S. Serin, Synth. React. Inorg. Met. – Org. Chem. 32 (2002) 629.
[6] M. Ertas, V. Ahsen, A. Gul, O. Bekarogelu, J. Organomet. Chem. 335 (1987) 105.
[7] Y. Gok, H. Kantekin, New J. Chem. 19 (1995) 461.
[8] D.C. Bradley, R.C. Mehrotra, I.P. Rothwell, A. Sing, Alkoxo and Aryloxo
Derivatives Metals, Academic Press, London, 2001.
[55] Z.D. Xu, H. Liu, S.L. Xiao, M. Yang, X.H. Bu, J. Inorg. Biochem. 90 (2002) 83.
[56] Y. Wang, Z.-Y. Yang, Trans. Met. Chem. 30 (2005) 902.
[57] C.-Y. Zhou, J. Zhao, Y.-B. Wu, C.-X. Yin, P. Yang, J. Inorg. Biochem. 101 (2007) 10.
[58] Q.S. Li, P. Yang, H.F. Wang, M.L. Guo, J. Inorg. Biochem. 64 (1996) 181.
[59] J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang, L. Ji, J. Inorg. Biochem. 91 (2002)
269.
[60] M.J. Waring, J. Mol. Biol. 13 (1965) 269.
[61] G.A. Neyhart, N. Grover, S.R. Smith, W.A. Kalsbeck, T.A. Fairly, M. Cory, H.H.
Thorp, J. Am. Chem. Soc. 115 (1993) 4423.
[9] A. Chakravorty, Coord. Chem. Rev. 13 (1974) 1.
[10] A.M. Duda, A. Karaczyn, H. Kozlowski, I.O. Fritsky, T. Glowiak, E.V. Prisyazhnaya,
T.Y. Sliva, J.S. Kozlowskac, J. Chem. Soc. Dalton Trans. 3853 (1997).
[11] B. Kurzak, H. Kozlowski, E. Farkas, Coord. Chem. Rev. 114 (1992) 169.
[12] B. Cervera, R. Ruiz, F. Lloret, M. Julve, J. Faus, M.C. Munoz, Y. Journaux, Inorg.
Chim. Acta 288 (1999) 57.
[62] X. Xiaoli, Y. Manman, Z. Chengyong, Z. Jing, Y. Pin, Chin. Sci. Bull. 51 (19) (2006)
2322.
[13] R. Ruiz, J. Sanz, B. Cervera, F. Lloret, M. Julve, C. Bois, J. Faus, M. Carmen Munoz,
J. Chem. Soc. Dalton Trans. 1623 (1993).
[63] D.S. Sigman, A. Mazumder, D.M. Perrin, Chem. Rev. 93 (1993) 2295.
[64] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochem. 31 (1992) 9319.
[65] J.B. Suh, Chaires, Bioorg. Med. Chem. 3 (6) (1995) 723.
[66] J.D. Aguirre, A.M. Angeles-Boza, A. Chouai, C. Turro, J. Pellois, K.R. Dunbar,
Dalton Trans. (2009) 10806.
[14] M. Kandaz, I. Yylmaz, S. Keskin, A. Koca, Polyhedron 21 (2002) 825.
[15] J.R. Dilworth, S.J. Parrott, Chem. Soc. Rev. 27 (1998) 43.
[16] P.J. Blower, Trans. Met. Chem. 23 (1998) 109.
[17] W.A. Wolkert, T.J. Hoffman, Chem. Rev. 99 (1999) 2269.
[18] K. Ohta, R. Higashi, M. Ikejima, I. Yamamoto, N. Kobayashi, J. Mater. Chem. 8
(1998) 1979.
[67] D.S. Sigman, Acc. Chem. Res. 19 (1986) 180.
[68] B. Armitage, Chem. Rev. 98 (1998) 1171.
[19] B.G. Malmstrom, Acc. Chem. Res. 26 (1993) 332.
[69] A. Sitlani, E.C. Long, A.M. Pyle, J.K. Barton, J. Am. Chem. Soc. 114 (1992) 2303.
[70] J.K. Barton, A.L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466.
[71] D. Stanbury, O. Haas, H. Taube, Inorg. Chem. 19 (1980) 518.
[72] P. Uma Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219.
[73] P. Uma Maheswari, M. Palaniandavar, Inorg. Chim. Acta 357 (2004) 901.
[74] R.P. Hertzberg, P.B. Dervan, J. Am. Chem. Soc. 104 (1982) 313.
[75] R.P. Hertzberg, P.B. Dervan, Biochemistry 23 (1984) 3934.
[20] M.C.M. Laranleira, R.A. Marusak, A.G. Lappin, Inorg. Chim. Acta 186 (2000) 300.
[21] M. Bakir, J. Electroanal. Chem. 466 (1999) 60.
[22] M. Bakir, J.A.M. McKenzie, J. Chem. Soc. Dalton Trans. 3571 (1997).
[23] A.R. Ozkaya, A. Gurek, A. Gul, O. Bekaroglu, Polyhedron 16 (1997) 1877.
[24] A.R. Ozkaya, I. Yilmaz, O. Bekaroglu, J. Porphyrins, Phthalocyanines 2 (1998)
483.
[25] A.R. Ozkaya, E. Hamuryudan, Z. Altuntasß Bayyr, O. Bekaroglu, J. Porphyrins
Phthalocyanines 4 (2000) 689.