of these molecules can be manipulated by temperature,17 pH18
or metal ions,19 there are few methods that reversibly control
guest binding. Diederich and co-workers used acid/base
chemistry to control the uptake and release of cycloalkanes,20
and we have used metal ions to manipulate a self-included
‘‘ouroborand’’ cavitand.21 These systems function well, but
less invasive switching processes are also desirable.22 The two
new cavitands presented here respond to light and heat by
changing their conformations, but only the tert-butyl substi-
tuted 1 forces guests out upon irradiation. The process is
reversible and can be cycled numerous times. The control of
guest binding underscores the subtle influence of appropriate
filling of space in recognition processes.23
R. H. Kramer, E. Y. Isacoff and D. Trauner, Nat. Chem. Biol.,
2006, 2, 47–52.
10 Two examples of azo-arenes attached to resorcin[4]arenes have
been reported. However, these molecules are not deep cavitands
and their guest binding function was not investigated, see:
(a) L. Husaru, M. Gruner, T. Wolff, W. D. Habicher and
R. Salzer, Tetrahedron Lett., 2005, 46, 3377–3379; (b) V. K. Jain
and P. H. Kanaiya, J. Inclusion Phenom. Macrocyclic Chem., 2008,
62, 111–115.
11 A. Lledo and J. Rebek Jr., Chem. Commun., 2010, 46, 1637–1639.
For other uniquely functionalized cavitands see: M. S. Brody,
C. A. Schalley, D. M. Rudkevich and J. Rebek, Jr., Angew. Chem.,
Int. Ed., 1999, 38, 1640–1644.
12 The synthesis of 3-tert-butyl nitrosobenzene is adapted from the
literature procedure: A. Defoin, Synthesis, 2004, 706–710. Experi-
mental details can be found in the ESIw.
13 The photostationary state is dependent on the conditions
employed. For instance, after heating in the dark, nearly all of 1
persists in the trans conformation for extended periods of time
(Fig. 1, bottom). Under ambient conditions a small amount of cis-1
is present. The quartz metal halide light employed in later experi-
ments produces even more cis-1 at that photostationary state.
14 For computational analysis see: (a) C. R. Crecca and A. E.
Roitberg, J. Phys. Chem. A, 2000, 110, 8188–8203; (b) P. C.
Chen and Y. C. Chieh, J. Mol. Struct. (Theochem), 2003, 624,
191–200. For a structural study see: A. Mostad and C. Romming,
Acta Crystallogr., Sect. C, 1983, 39, 1121.
We are grateful to the Skaggs Institute and the NIGMS
(GM 27953) for financial support. A postdoctoral fellowship
for O.B.B. was provided by NIH (F32GM087068). A.C.S. is a
Skaggs Pre-doctoral Fellow.
Notes and references
1 (a) E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int.
Ed., 2007, 46, 72–191; (b) Molecular Devices and Machines—A
Journey into the Nanoworld, ed. V. Balzani, A. Credi and
M. Venturi, Wiley-VCH, 2003, pp. 288–328; (c) Molecular
Machines Special Issue. Acc. Chem. Res. 2001, 34, 409–522.
2 M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, C. Hamers,
G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer,
J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White and
D. J. Williams, Angew. Chem., Int. Ed., 1998, 37, 333–337.
3 R. A. Bissell, E. Cordova, A. E. Kaifer and J. F. Stoddart, Nature,
1994, 369, 133–137.
4 (a) D. A. Leigh, P. J. Lusby, A. M. Z. Slawin and D. B. Walker,
Angew. Chem., Int. Ed., 2005, 44, 4557–4564; (b) N. Armaroli,
V. Balzani, J.-P. Collin, P. Gaviza, J.-P. Sauvage and B. Ventura,
J. Am. Chem. Soc., 1999, 121, 4397–4408; (c) S. A. Vignon,
T. Jarrosson, T. Iijima, H.-R. Tseng, J. K. M. Sanders and
J. F. Stoddart, J. Am. Chem. Soc., 2004, 126, 9884–9885.
5 (a) S. P. Fletcher, F. Dumur, M. M. Pollard and B. L. Feringa,
Science, 2005, 310, 80–82; (b) J. V. Hernandez, E. R. Kay and
D. A. Leigh, Science, 2004, 306, 1532–1537.
15 Only in experiments where a minimal amount of the weakest guests
are present did we observe a slight decrease in the amount of bound
guest.
16 (a) K. Ichimura, S. K. Oh and M. Nakagawa, Science, 2000, 288,
1624–1626; (b) R. J. Hooley, S. M. Biros and J. Rebek, Jr., Angew.
Chem., Int. Ed., 2006, 45, 3517–3519; (c) S. K. Oh, M. Nakagawa
and K. Ichimura, J. Mater. Chem., 2002, 12, 2262–2269;
(d) C. Schafer, R. Eckel, R. Ros, J. Mattay and D. Anselmetti,
J. Am. Chem. Soc., 2007, 129, 1488–1489; (e) V. A. Azov,
A. Schlegel and F. Diederich, Angew. Chem., Int. Ed., 2005, 44,
4635–4638; (f) S. M. Butterfield and J. Rebek, Jr., J. Am. Chem.
Soc., 2006, 128, 15366–15367; (g) T. Iwasawa and J. Rebek, Jr.,
Science, 2007, 317, 493–496.
17 (a) J. R. Moran, S. Karbach and D. J. Cram, J. Am. Chem. Soc.,
1982, 104, 5826–5828; (b) D. J. Cram and J. M. Cram, Container
Molecules and Their Guests, Royal Society of Chemistry,
Cambridge, 1994.
18 P. J. Skinner, A. G. Cheetham, A. Beeby, V. Gramlich and
F. Diederich, Helv. Chim. Acta, 2001, 84, 2146–2153.
19 V. A. Azov, A. Beeby, M. Cacciarini, A. G. Cheetham,
F. Diederich, M. Frei, J. K. Gimzewski, V. Gramlich, B. Hecht,
B. Jaun, T. Latychevskaia, A. Lieb, Y. Lill, F. Marotti,
A. Schlegel, R. R. Schlittler, P. J. Skinner, P. Seiler and
Y. Yamakoshi, Adv. Funct. Mater., 2006, 16, 147–156.
20 T. Gottschalk, B. Jaun and F. Diederich, Angew. Chem., Int. Ed.,
2007, 46, 260–264.
21 F. Durola and J. Rebek, Jr., Angew. Chem., Int. Ed., 2010, 49,
3189–3191.
22 M. C. Letzel, C. Schafer, F. R. Novara, M. Speranza,
¨
A. B. Rozhenko, W. W. Schoeller and J. Mattay, J. Mass
Spectrom., 2008, 43, 1553–1564.
23 (a) S. Mecozzi and J. Rebek, Jr., Chem.–Eur. J., 1998, 4,
1016–1022; (b) A. Shivanyuk and J. Rebek, Jr., J. Am. Chem.
Soc., 2003, 125, 3432–3433; (c) F. Hof, C. Nuckolls and J. Rebek,
Jr., J. Am. Chem. Soc., 2000, 122, 4251–4252.
6 (a) A. Ueno, H. Yoshimura, R. Saka and T. Osa, J. Am. Chem.
Soc., 1979, 101, 2779–2780; (b) M. Fukushima, T. Osa and
A. Ueno, J. Chem. Soc., Chem. Commun., 1991, 15–17;
(c) Y. Wang, N. Ma, Z. Wang and X. Zhang, Angew. Chem.,
Int. Ed., 2007, 46, 2823–2826; (d) For a review see: E. Luboch,
Z. Poleska-Muchlado, M. Jamrogiewicz and J. Biernat,
Macrocyclic Chemistry Current Trends and Future Perspectives,
ed. K. Gloe, Springer, Dordrecht, 2005, pp. 203–218.
7 (a) S. Shinkai, T. Nakaji, Y. Nishida, T. Ogawa and O. Manabe,
J. Am. Chem. Soc., 1980, 102, 5860–5865; (b) S. Shinkai, T. Ogawa,
T. Nakaji, Y. Kusano and O. Manabe, Tetrahedron Lett., 1979, 20,
4569–4572; (c) S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu
and O. Manabe, J. Am. Chem. Soc., 1981, 103, 111–115.
8 Y. Hua and A. H. Flood, J. Am. Chem. Soc., 2010, 132,
12838–12840.
9 (a) M. R. Banghart, A. Mourot, D. L. Fortin, J. Z. Yao,
R. H. Kramer and D. Trauner, Angew. Chem., Int. Ed., 2009, 48,
9097–9101; (b) M. Volgraf, P. Gorostiza, R. Numano,
c
658 Chem. Commun., 2011, 47, 656–658
This journal is The Royal Society of Chemistry 2011