M. Ballico et al. / European Journal of Medicinal Chemistry 46 (2011) 712e720
719
(c) T. Wessel, B. Franck, M. Möller, U. Rodewald, M. Läge, Porphyrins with
aromatic 26-
-electron systems, Angew. Chem. Int. Ed. Engl. 32 (1993)
1148e1151 (and references therein);
(d) K. Schaffner, E. Vogel, G. Jori, Porphycenes as photodynamic therapy
agents, in: Biological Effects of Light. de Gruyter, Berlin, 1994, pp. 312e321
(and references therein).
containing 0.02% sodium azide in PBS to remove PFA and TritonX-
100 (0.1% in PBS), the cells were incubated with Hoechst to stain the
nuclei. The cells were analysed using a Leica TCSNT confocal laser
scanning system on an inverted microscope DMIRBE (Leica
Microsystems, Heidelberg, German). Green fluorescence was
excited with 488 nm line Argon-Ion laser and detected with
emission bandpass filters 500/530 nm.
p
[6] D. Magda, R.A. Miller, J.L. Sessler, B.L. Iverson, Site-specific hydrolysis of RNA
by europium(III) texaphyrin conjugated to
a synthetic oligodeoxyr-
ibonucleotide, J. Am. Chem. Soc. 116 (1994) 7439e7440.
[7] (a) C.J. Gomer, Photodynamic therapy in the treatment of malignancies,
Semin. Hematol. 26 (1989) 27e34;
4.8. FACS analysis
(b) T.J. Dougherty, Hematoporphyrin as a photosensitizer of tumors, Photo-
chem. Photobiol. 38 (1983) 377e379;
(c) H.I. Pass, Photodynamic therapy in oncology e mechanisms and clinical
use, J. Natl. Cancer Inst. 85 (1993) 443e456;
(d) S.B. Brown, T.G. Truscott, New light on cancer therapy, Chem. Brit. 29
(1993) 955e958.
The B78-H1 cells were seeded in a 6 wells/plate at density of
3 ꢀ 105 cells. The treatment was performed with 4, 5 and 6 at
concentrations of 15 mM for 24 h. Then the cells were harvested,
[8] (a) R.R. Allison, V.S. Bagnato, C.H. Sibata, Future of oncologic photodynamic
therapy, Future Oncol. 6 (2010) 929e940;
resuspended in 0.5 ml of PBS and washed twice and analysed by
a FACScan (Becton Dickinson, San Jose, USA) equipped with a single
488 nm argon laser. A minimum of 10,000 cells for sample was
acquired in list mode and analysed using Cell Quest software. The
signal of 4, 5 and 6 was detected by FL1 in log scale.
(b) Curr. Pharm. Des 16 (2010) 1863e1976;
(c) A.D. Garg, D. Nowis, J. Golab, P. Agostinis, Photodynamic therapy: illumi-
nating the road from cell death towards anti-tumor immunity, Apoptosis 15
(2010) 1050e1071;
(d) M.C. Almeida Issa, M. Manela-Azulay, Photodynamic therapy: a review of
the literature and image documentation, Bras. Dermatol. 85 (2010) 501e511;
(e) S.O. Gollnick, C.M. Brackett, Enhancement of anti-tumor immunity by
photodynamic therapy, Immunol. Res. 46 (2010) 216e226;
(f) B. Ortel, C.R. Shea, P. Calzavara-Pinton, Molecular mechanisms of photo-
dynamic therapy, Front. Biosci. 14 (2009) 4157e4172;
(g) D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer,
Nat. Rev. Cancer 3 (2003) 380e387;
(h) C.H. Sibata, V.C. Colussi, N.L. Oleinick, T.J. Kinsella, Photodynamic therapy
in oncology, Expert Opin. Pharmacother. 2 (2001) 917e927;
(i) T.J. Dougherty, An update on photodynamic therapy applications, J. Clin.
Laser Med. Surg. 20 (2002) 3e7.
Acknowledgements
This study was supported by the Italian Ministry of University
and Scientific Research (PRIN 2007), FVG and PRISMA. We thank
Dr. M. Zacchigna (University of Trieste) for fluorescence
measurements.
Appendix. Supplementary data
[9] (a) T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik,
J. Moan, Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst. 90 (1998)
889e905;
Supplementary data associated with this article can be found in
(b) J. Miller, Photodynamic therapy: the sensitization of cancer cells to light,
Chem. Educ. Today 76 (1999) 592e594;
(c) S. Pervaiz, Reactive oxygen-dependent production of novel photo-
chemotherapeutic agents, FASEB J. 15 (2001) 612e617.
References
[10] (a) L.B. Josefsen, R.W. Boyle, Photodynamic therapy and the development of
metal-based photosensitizers, Metal Based Drugs (2008) Article ID 276109;
(b) H. Ali, J.E. van Lier, Metal complexes as photo- and radio-sensitizers, Chem.
Rev. 99 (1999) 2379e2450.
[1] (a) J.L. Sessler, A.E. Vivian, D. Seidel, A.K. Burrell, M. Hoehner, T.D. Mody,
A. Gebauer, S.J. Weghorn, V. Lynch, Actinide expanded porphyrin complexes,
Coord. Chem. Rev. 216 (2001) 411e434;
[11] (a) C. Comuzzi, S. Cogoi, M. Overhand, G.A. Van der Marel, H.S. Overkleeft,
L.E. Xodo, Synthesis and biological evaluation of new pentaphyrin macro-
cycles for photodynamic therapy, J. Med. Chem. 49 (2006) 196e204;
(b) C. Comuzzi, S. Cogoi, L.E. Xodo, Spectroscopic characterization of the
oxidation control of the iso-pentaphyrin/pentaphyrin system, Tetrahedron 62
(2006) 8147e8151.
(b) S. Hannah, V. Lynch, D.M. Guldi, N. Gerasimchuk, C.L.B. MacDonald,
D. Magda, J.L. Sessler, Late first-row transition-metal complexes of texaphyrin,
J. Am. Chem. Soc. 124 (2002) 8416e8427;
(c) S. Mori, S. Shimizu, R. Taniguchi, A. Osuka, Group 10 metal complexes of
meso-aryl-substituted [26]hexaphyrins with
a metalecarbon bond, Inorg.
Chem. 44 (2005) 4127e4129;
[12] (a) D.J. Ball, S.R. Wood, D.I. Vernon, J. Griffiths, T.M.A.R. Dubbelman,
S.B. Brown, The characterization of three substituted zinc phthalocyanines of
differing charge for use in photodynamic therapy. A comparative study of
their aggregation and photosensitising ability in relation to mTHPC and pol-
yhaematoporphyrin, J. Photochem. Photobiol. B. 45 (1998) 28e35;
(b) V. Mantareva, V. Kussovski, I. Angelov, E. Borisova, L. Avramov,
G. Schnurpfeild, D. Wöhrled, Photodynamic activity of water-soluble phtha-
locyanine zinc(II) complexes against pathogenic microorganisms, Bioorg.
Med. Chem. 15 (2007) 4829e4835.
[13] D.M. Guldi, T.D. Mody, N.N. Gerasimchuk, D. Magda, J.L. Sessler, Influence of
large metal cations on the photophysical properties of texaphyrin, a rigid
aromatic chromophore, J. Am. Chem. Soc. 122 (2000) 8289e8298.
[14] R.E. Danso-Danquah, L.Y. Xie, D. Dolphin, Characterization of decamethyl and
ethoxycarbonyl pentaphyrins, Heterocycles 41 (1995) 2553e2564.
[15] (a) Q.M. Huang, Z.Q. Pan, P. Wang, Z.P. Chen, X.L. Zhang, H.S. Xu, Zinc(II) and
(d) L.A. Yatsunyk, N.V. Shokhirev, F.A. Walker, Magnetic resonance spectro-
scopic investigations of the electronic ground and excited states in strongly
nonplanar iron(III) dodecasubstituted porphyrins, Inorg. Chem. 44 (2005)
2848e2866.
[2] J.L. Sessler, J.M. Davis, Sapphyrins: versatile anion binding agents, Acc. Chem.
Res. 34 (2001) 989e997.
[3] J.L. Sessler, J.S. Weghorn, in: J.E. Baldwin, F.R.S. Magnus, P.D. Magnus (Eds.),
Expanded, Contracted & Isomeric Porphyrins, Tetrahedron Organic Chemistry
Series, vol. 15, Elsevier Science Ltd, 1997 (chapter 6 and references cited therein).
[4] (a) J.L. Sessler, A.K. Burrell, Expanded porphyrins, Top. Curr. Chem. 161 (1992)
177e273;
(b) V.W. Day, T.J. Marks, W.A. Wachter, Large metal ion-centered template
reactions. Uranyl complex of cyclopentakis(2-iminoisoindoline), J. Am. Chem.
Soc. 97 (1975) 4519e4527;
(c) J.L. Sessler, G. Hemmi, T.D. Mody, T. Murai, A.K. Burrell, S.W. Young, Tex-
aphyrins e synthesis and applications, Acc. Chem. Res. 27 (1994) 43e50;
(d) A.K. Burrell, M. Cyr, V. Lynch, J.L. Sessler, Nucleophilic-attack at the meso
position of a uranyl sapphyrin complex, J. Chem. Soc. Chem. Commun. 24 (1991)
1710e1713;
(e) A.K. Burrell, G. Hemmi, V. Lynch, J.L. Sessler, Uranylpentaphyrin e an actinide
complex of an expanded porphyrin, J. Am. Chem. Soc. 113 (1991) 4690e4692;
(f) J.L. Sessler, T.D. Mody, V. Lynch, Synthesis and X-ray characterization of
a uranyl(VI) schiff-base complex derived from a 2:2 condensation product of
3,4-diethyl pyrrole-2,5-dicarbaldehyde and 1,2-diamino-4,5-dimethox-
ybenzene, Inorg. Chem. 31 (1992) 529e531;
copper(II) complexes of b-substituted hydroxylporphyrins as tumor photo-
sensitizers, Bioorg. Med. Chem. Lett. 16 (2006) 3030e3033;
(b) J. Scott, J.M.E. Quirke, H.J. Vreman, D.K. Stevenson, K.R. Downum, Metal-
loporphyrin phototoxicity, J. Photochem. Photobiol. B. 7 (1990) 149e157.
[16] (a) T.M. Busch, H.W. Wang, E.P. Wileyto, G.Q. Yu, R.M. Bunte, Increasing
damage to tumor blood vessels during motexafin Lutetium-PDT through use
of low fluence rate, Radiat. Res. 174 (2010) 331e340;
(b) A.E. O’Connor, W.M. Gallagher, A.T. Byrne, Porphyrin and nonporphyrin
photosensitizers in oncology: preclinical and clinical advances in photody-
namic therapy, Photochem. Photobiol. 85 (2009) 1053e1074;
(c) K. Verigos, R. Mick, T.C. Zhu, R. Whittington, D. Smith, A. Dimofte, J. Finlay,
T.M. Busch, Z.A. Tochner, S.B. Malkowicz, E. Glatstein, S.M. Hahn, Updated
results of a phase I trial of motexafin lutetium-mediated interstitial photo-
dynamic therapy in patients with locally recurrent prostate cancer, J. Environ.
Pathol. Tox. 25 (2006) 373e387;
(d) H.M. Ross, J.A. Smelstoys, G.J. Davis, A.S. Kapatkin, F. Del Piero, E. Reineke,
H. Wang, T.C. Zhu, T.M. Busch, A.G. Yodh, S.M. Hahn, Photodynamic therapy
with motexafin lutetium for rectal cancer: a preclinical model in the dog,
(g) V. Král, E.A. Brucker, G. Hemmi, J.L. Sessler, J. Kralova, H. Bose Jr., A nonionic
water-soluble pentaphyrin derivative e synthesis and cytotoxicity, Bioorg.
Med. Chem. 3 (1995) 573e578.
[5] (a) J.L. Sessler, T. Morishima, V. Lynch, Rubyrin
e a new hexapyrrolic
expanded porphyrin, Angew. Chem. Int. Ed. Engl. 30 (1991) 977e980;
(b) J.L. Sessler, S. Weghorn, V. Lynch, M.R. Johnson, Turcasarin, the largest
expanded porphyrin to date, Angew. Chem. Int. Ed. Engl. 33 (1994)
1509e1512;