Notes and references
y The co-conformational exchange in Fig. 3B can also be acheived by
tetralactam circumrotation, but this is a less favored pathway because
it must break four hydrogen bonds. For further discussion, see ref. 16
and 18.
z The Leigh group has reported that energy barriers for tetralactam
circumrotation in [2]catenanes are quite sensitive to tetralactam
molecular structure and solvent. For tetralactams with isophthalamide
units, the steric bulk at the 5-position has a large influence on
circumrotation rates. For further discussion, see ref. 18.
1
Fig. 4 Partial H NMR spectra (500 MHz) of catenane 2 in CD2Cl2
1 (a) E. Arunkumar, C. C. Forbes, B. C. Noll and B. D. Smith,
J. Am. Chem. Soc., 2005, 127, 3288; (b) J. J. Gassensmith,
J. M. Baumes and B. D. Smith, Chem. Commun., 2009, 6329.
2 (a) J.-J. Lee, A. G. White, J. M. Baumes and B. D. Smith, Chem.
Commun., 2010, 46, 1068; (b) A. G. White, N. Fu, W. M. Leevy,
J.-J. Lee, M. A. Blasco and B. D. Smith, Bioconjugate Chem., 2010,
21, 1297; (c) J. R. Johnson, N. Fu, E. Arunkumar, W. M. Leevy,
S. T. Gammon, D. Piwnica-Worms and B. D. Smith, Angew.
Chem., Int. Ed., 2007, 46, 5528.
3 J. M. Baumes, J. J. Gassensmith, J. Giblin, J.-J. Lee, A. G. White,
W. J. Culligan, W. M. Leevy, M. Kuno and B. D. Smith,
Nat. Chem., 2010, 2, 1025.
4 E. Arunkumar, P. K. Sudeep, K. V. Kamat, B. C. Noll and
B. D. Smith, New J. Chem., 2007, 31, 677.
5 J. J. Gassensmith, S. Matthys, J.-J. Lee, A. Wojcik, P. V. Kamat
and B. D. Smith, Chem.–Eur. J., 2010, 16, 2916.
6 N. Fu, J. M. Baumes, E. Arunkumar, B. C. Noll and B. D. Smith,
J. Org. Chem., 2009, 74, 6462.
7 (a) J. M. Baumes, I. Murgu, A. Oliver and B. D. Smith, Org. Lett.,
2010, 12, 4980; (b) E. Arunkumar, N. Fu and B. D. Smith,
Chem.–Eur. J., 2006, 12, 4684.
8 (a) J. J. Gassensmith, E. Arunkumar, L. Barr, J. M. Baumes,
K. M. DiVittorio, J. R. Johnson, B. C. Noll and B. D. Smith,
J. Am. Chem. Soc., 2007, 129, 15054; (b) D. Jacquemin,
E. A. Perpete, A. D. Laurent, X. Assfeld and C. Adam, Phys.
Chem. Chem. Phys., 2009, 11, 1258.
9 (a) S.-Y. Hsueh, C.-C. Lai, Y.-H. Liu, S.-M. Peng and S.-H. Chiu,
Angew. Chem., Int. Ed., 2007, 46, 2013; (b) S.-Y. Hsueh, C.-C. Lai
and S.-H. Chiu, Chem.–Eur. J., 2010, 16, 2997; (c) M. Xue,
Y.-S. Su and C.-F. Chen, Chem.–Eur. J., 2010, 16, 8537.
10 (a) D. B. Amabilino and F. Stoddart, Chem. Rev., 1995, 95, 2725;
(b) J.-P. Sauvage and C. Dietrich-Buchecker, in Molecular Catenanes,
Rotaxanes and Knots, ed. Wiley-VCH, Weinheim, Germany, 1999.
11 (a) M. Weck, B. Mohr, J.-P. Sauvage and R. H. Grubbs, J. Org.
Chem., 1999, 64, 5463; (b) M. D. Lankshear and P. D. Beer, Acc.
Chem. Res., 2007, 40, 657; (c) S. T. Caldwell, G. Cooke,
B. Fitzpatrick, D. Long, G. Rabani and V. M. Rotello, Chem.
Commun., 2008, 5912.
12 D. A. Leigh, A. Murphy, J. P. Smart and A. M. Z. Slawain, Angew.
Chem., Int. Ed. Engl., 1997, 36, 728.
13 J. V. Ros-Lis, B. Garcia, D. Jimenez, R. Martinez-Manez,
F. Sancenon, J. Soto, F. Gonzalvo and M. C. Valldecabres,
J. Am. Chem. Soc., 2004, 126, 4064.
14 (a) E. Arunkumar, C. C. Forbes and B. D. Smith, Eur. J. Org. Chem.,
2005, 19, 4051; (b) K.-Y. Law, in Organic Photochemistry,
ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York,
1997, ch. 12, pp. 519–584; (c) S. Das, K. G. Thomas and
M. V. George, in Organic Photochemistry, ed. V. Ramamurthy and
K. S. Schanze, Marcel Dekker, New York, 1997, ch. 11, pp. 467–517;
(d) J. J. McEwen and K. J. Wallace, Chem. Commun., 2009, 6339.
15 J. J. Gassensmith, L. Barr, J. M. Baumes, A. Paek, A. Nguyen and
B. D. Smith, Org. Lett., 2008, 10, 3343.
16 (a) M. Pons and O. Millet, Prog. Nucl. Magn. Reson. Spectrosc.,
2001, 38, 267; (b) M. S. Deleuze, D. A. Leigh and F. Zerbetto,
J. Am. Chem. Soc., 1999, 121, 2364.
17 N. Fu, J. J. Gassensmith and B. D. Smith, Aust. J. Chem., 2010, 63,
792.
showing the squaraine macrocycle cis and trans alkene signals. The
spectra indicate two-site exchange of equally populated syn and anti
conformations.
single set of exchange-averaged signals for the tetralactam’s
two anthracene units.y In other words, NMR cannot distinguish
the anthracene unit inside the tetralactam from the anthracene
that is outside. Even at low temperatures it is not apparent
that squaraine macrocycle skipping becomes slow relative to
the NMR time scale. For example, the four sets of tetralactam
benzylic protons remain chemical shift equivalent at ꢁ90 1C.
The second, large-amplitude motion is twisting of the
squaraine macrocycle due to hindered rotation about the
squaraine aniline C–N bonds which exhibit partial double
bond order due to strong delocalization with the squaraine
chromophore (Fig. 3A). In this case, the activation barrier is
sufficiently high that signal coalescence is observed at around
ꢁ40 1C and slow exchange spectra are obtained at lower
temperatures. The key evidence that unambiguously identifies
this dynamic process is the two-site exchange phenomena
exhibited by the squaraine macrocycle alkene signals
(Fig. 4). Measurements of the coalescence temperatures and
limiting chemical shifts for these signals (see ESI) allowed
determination of the free energy of activation to be 11.6 ꢀ 0.3
and 11.4 ꢀ 0.2 kcal molꢁ1 for 1 and 2, respectively. Thus, the
dynamic process is independent of the size of the group at the
5-position of the two isophthalamide units in the tetralactam,
suggesting that this motion does not involve the tetralactam.z
Moreover, the energy barrier is quite similar to the value of
13 kcal molꢁ1 for squaraine aniline C–N bond rotation in a
related squaraine rotaxane system.17 Additional broadening of
some catenane signals is observed at ꢁ90 1C (see ESI), and
most likely this is due to slowing of low energy dynamic
processes such as squaraine macrocycle skipping and tetra-
lactam macrocyclic chair/boat flips.6,18
In summary, squaraine catenanes 1–3 are the first examples
of a new class of interlocked squaraine-derived molecular
architecture. The catenane topology exhibits unique dynamic
processes as summarized in Fig. 3. Recently, we reported that
squaraine rotaxanes with anthracene-containing tetralactam
macrocycles can be converted by simple photooxidation into
endoperoxide derivatives that undergo a chemiluminescent
cycloreversion reaction.3 Preliminary studies indicate that
squaraine catenanes exhibit the same phenomenon and
work is ongoing to determine how the chemiluminescence
intensity is altered by the changes in structural topology. This
study was supported by the NSF and the University of
Notre Dame.
18 (a) D. A. Leigh, A. Murphy, J. P. Smart, M. S. Deleuze and
F. Zerbotto, J. Am. Chem. Soc., 1998, 120, 6458;
(b) A. G. Johnston, D. A. Leigh, L. Nezhat, J. P. Smart and
M. D. Deegan, Angew. Chem., Int. Ed. Engl., 1995, 34, 1212.
c
7190 Chem. Commun., 2011, 47, 7188–7190
This journal is The Royal Society of Chemistry 2011