4374
S. R. K. Pingali, B. S. Jursic / Tetrahedron Letters 52 (2011) 4371–4374
17. Zhang, W.-G.; Lin, J.-G.; Niu, Z.-Y.; Zhao, R.; Liu, D.-L.; Wang, N.-L.; Yao, X.-S. J.
Table 3
Asian Nat. Prod. Res. 2007, 9, 23–28.
Microwave-assisted preparation of 1,3-benzodioxole from ketones
18. Majetich, G.; Liu, S. Synth. Commun. 1993, 23, 2331–2335.
19. Cole, E. R.; Crank, G.; Minh, H. T. H. Aust. J. Chem. 1980, 33, 675–680.
20. Boshta, N. M.; Bomkamp, M.; Waldvogel, S. R. Tetrahedron 2009, 65, 3773–
3779.
21. Liang, X.; Gao, S.; Wang, W.; Cheng, W.; Yang, J. Chin. J. Chem. Eng. 2008, 16,
124–127.
22. Ficht, S.; Roglin, L.; Ziehe, M.; Breyer, D. Synlett 2004, 2525–2528.
23. Li, T.-S.; Li, L.-J.; Lu, B.; Yang, F. J. Chem. Soc., Perkin Trans. 1 1998, 3561–3564.
24. Wagami, H. I.; Yatagai, M.; Nalazawa, M. Bull. Chem. Soc. Jpn. 1991, 64, 175–182.
25. Bikbulatov, R. R.; Timofeeva, T. V.; Zorina, L. N. Zh. Obshch. Khim. 1996, 66,
1854–1855.
R1
R2
O
2
Time (min)
Yield (%)
O
2a: R1 = R2 = CH3
120
60
120
90
60
60
120
75
75
120
120
120
120
82
98
96
93
92
91
96
86
89
96
87
97
89
2b: R1 = CH3; R2 = C(CH3)3
2c: R1 = CH3, R2 = CH2CH3
2d: R1 = R2 = CH2CH3
2e: R1 = CH3; R2 = n-C6H13
2f: R1–R2 = –(CH2)4–
26. Jursic, B. S. Microwave Reactor for Laboratory and Industrial Organic Reactions,
U.S. Patent in preparation.
2g: R1–R2 = –(CH2)5–
2h: R1 = CH3; R2 = CH2COCH3
2i: R1 = CH3; R2 = CH2CH2COCH3
2j: R1 = CH3; R2 = C6H5
27. The laboratory version of our microwave has a cavity size of 21.6 cm in height,
17.30 cm wide, and 25.4 cm deep with two 2.54 cm hole on the top of the
microwave for the condenser and thermometer. The magnetron (700 W) was
directly wired to variable electronic autotransformer for control of the
magnetron power. ECM meter (10 A) was wired to the magnetron
transformer to control the microwave power. The magnetic stirrer was
installed beneath the cavity for stirring the reaction mixture. The reaction
temperature was measured directly with a thermometer inserted into the
reaction mixture through a condenser and/or by infrared reading. For chemical
reactions, a conventional microwave is not applicable due to the fact that the
magnetron power cannot be controlled and, therefore, reaction mixtures are
burned after several minutes of microwave irradiation. Additionally, reaction
mixtures cannot be stirred and neither a condenser nor a thermometer can be
added to the reaction container. For these reasons conventional as well as
currently available commercial microwave laboratory reactors cannot be used
effectively in organic synthetic labs. However, conventional microwaves can be
used for few short reactions (maximum a few minutes) where reaction media
overheating and solvent evaporation are acceptable.
2k: R1 = CH3; R2 = 4-ClC6H4
2l: R1 = CH3; R2 = 3,5-(CH3)2C6H4
2m: R1 = CH3; R2 = CH2CO2C2H5
aliphatic ketones are excellent starting materials; however, reac-
tion with aliphatic aldehydes must be carefully monitored to max-
imize the isolated yield of the product due to formation aldol
byproduct. Even in this case, isolated yield of corresponding 1,3-
benzodioxole is higher than 70%. Due to its simplicity the method
is applicable to a large-scale preparation of benzodioxoles.
28. Upadhyay, S. K.; Subramanya, P. R. K.; Jursic, B. S. Tetrahedron Lett. 2010, 51,
2215–2217.
Acknowledgment
29. Upadhyay, S. K.; Jursic, B. S. Synth. Commun., in press.
30. Pingali, S. R. K.; Upadhyay, S. K.; Jursic, B. S. Green Chem. 2011. doi:10.1039/
31. Nagariya, A. K.; Meena, A. K.; Yadav, A. K.; Niranjan, U. S.; Pathak, A. K.; Singh,
B.; Rao, M. M. J. Pharm. Research 2010, 3, 575–580.
32. Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for
Organic Chemists; Wiley-VCH: Weinheim, 2009.
We thank the National Science Foundation for financial support
(CHE-0611902).
References and notes
33. Kappe, C. O. Chem. Sov. Rev. 2008, 37, 1127–1139.
1. Wuts, P. G.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis, fourth
ed.; Wiley: New York, NY, 2007.
2. Li, N.; Wu, J.; Hasegawa, T.; Sakai, J.; Bai, L.; Wang, L.; Kakuta, S.; Furuya, Y.;
Ogura, H.; Kataoka, T.; Tomida, A.; Tsuruo, T.; Ando, M. J. Nat. Prod. 2007, 70,
998–1001.
3. Shi, S. Q.; Gao, H.; Nie, J. Chin. Chem. Lett. 2007, 18, 750–753.
4. Shi, S.; Nie, J. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82, 44–50.
5. Majerus, S. L.; Alibhai, N.; Tripathy, S.; Durst, T. Can. J. Chem. 2000, 78, 1345–
1355.
6. Gupta, M. P.; Arias, T. D.; Williams, N. H.; Bos, R.; Tattje, D. H. E. J. Nat. Prod.
1985, 48, 330.
34. The NMR reaction following was performed in refluxing solvents. Samples are
taken from reaction mixture at the time described in Figure 1 and the solvent
was immediately removed under nitrogen flow. The solid residue was slurred
in CDCl3, the insoluble p-toluenesulfonic acid was separated by filtration, and
1H NMR of the CDCl3 filtrate was recorded on Varian Unity 400.
35. Benzene (10 ml) suspension of carbonyl compound (1 mmol), catechol (1.1 g;
1 mmol), and p-toluenesulfonic acid (5 mg) ws refluxed with Dean Stark trap
and microwave power of 400 W for time indicated in Tables 2 and 3. Solvent
was evaporated at reduced pressure. The solid residue was dissolved in hot
dichloromethane–hexane (1:9; 3 ml) place on short (2 Â 2 inches) silica gel
column. Silica gel was washed with dichloromethane–hexane (1:9; 3 Â 20 ml).
The filtrates were combined and the solvent was evaporated to yield pure
product.
7. Shulgin, A. T. Nature 1963, 197, 379.
8. Dallacker, F.; Maier, R. D.; Morcinek, R.; Rabie, A.; Van Loo, R. Chem. Ber. 1980,
113, 1320–1327.
36. Typical large-scale preparation of 1,3-benzodioxoles. Preparation of 2-methyl-
2-phenylbenzo[d][1,3]dioxole (2j). A mixture of acetophenone (60 g; 0.5 mol),
catechol (55 g; 0.5 mol), and p-toluenesulfonic acid (0.2 g) in benzene (100 ml)
was refluxed under microwave heating (magnetron power of 400 W). After 2 h
the amount of water collected in the dean star trap is constant and reaction
mixture was cooled to room temperature and then to 10 °C with ice-water bath
cooling. Formed white needle crystals were separated by filtration and dried at
room temperature to afford 102 g (98%) of pure product. 1H NMR (CDCl3), d
7.70 (2H, d, J = 7.8 HZ), 7.43 (3H, m), 6.86 (4H, m), and 2.08 (3H, s) ppm. 13C
NMR (CDCl3) d 147.8, 141.8, 129.4. 128.9, 125.5, 121.9, 117.1, 109.1 and
27.5 ppm.
9. Venkatasamy, R.; Faas, L.; Young, A. R.; Ramana, A.; Hidera, R. C. Bioorg. Med.
Chem. 2004, 12, 1905–1920.
10. Ullrich, T.; Baumann, K.; Welzenbach, K.; Schmutz, S.; Camenisch, G.;
Meingassner, J. G.; Weitz, S. G. Bioorg. Med. Chem. Lett. 2004, 14, 2483–2487.
11. Matsuno, N.; Okamoto, H. U.S. Patent 7,354,911; 2008.
12. Spedding, D. L.; Stevenson, T. M. U.S. Patent 5,633,218; 1997.
13. Minh, T. H.; Cole, E. R.; Crank, G. U.S. Patent 4,499,115; 1985.
14. Leite, A. C.; da Silva, K. P.; de Souza, I. A.; de Araujo, J. M.; Brondani, D. J. Eur. J.
Med. Chem. 2004, 39, 1059–1565.
15. Jurd, L.; Narayanan, V. L.; Paull, K. D. J. Med. Chem. 1987, 30, 1752–1756.
16. Ravelli, D.; Albini, A.; Fagnoni, M. Eur. J. Chem. 2011, 17, 572–579.