Macromolecules
ARTICLE
0 to À1.6 V, the absorption peaks at 460 and 500 nm decrease in
favor of new absorption peaks at 570, 610, and 650 nm. Further
decrease in the potential did not show any spectral changes. The
origin of new peakswas attributed to the formation of radical anions
of perylene moieties,26 which is in agreement with the electro-
chemical data. For G1 NTCDI, a stepwise increase of the electrode
potential to 0.8 V drastically quenches the absorption peak at
460 nm with the simultaneous formation of a new absorption band
in the longer wavelength region from 600 to 800 nm similar to that
of G1 Per which is attributed to the formation of radical cations of
polyterthiophene showingthe doped state of the polymer.27 On the
other hand, a stepwise decrease of the electrode potential from 0 to
À1.6 V allows a complete recovery of the absorption peak without
any other changes in the absorption spectrum. Further reduction in
the electrode potential to À2.5 V did not change the absorption
spectrum. The electrochemical reduction of naphthalene diimide to
the corresponding radical anion state leads to a change in the
absorption with the appearance of new peak at 470 nm. In this case,
this change was not visible as the polyterthiophene has an intense
absorption in this region. In case of G1 Per, the fabricated films
shows a clear dual electochromism by showing electrochromic
activity in both anodic and cathodic potential scans. These spectral
changes observed in the UVÀvis spectrum are difficult to see with
the naked eye, especially during cathodic scan as the shift in the
wavelength is very small. However, this study reveals protocols for
making libraries of materials that can be tailored to act as dual
electrochomic materials and leading to multifunctional electro-
chromic films. It will be interesting to investigate the electrolumi-
nescence behavior of these materials as well.
(2) (a) Furuta, P.; Brooks, J.; Thompson, M. E.; Frechet, J. M. J.
J. Am. Chem. Soc. 2003, 125, 13165. (b) Kwok, C. C.; Wong, M. S.
Macromloecules 2001, 34, 6821. (c) Wang, P. W.; Liu, Y. J.; Devadoss, C.;
Bharathi, P.; Moore, J. S. Adv. Mater. 1996, 8, 237.
(3) (a) Skotheim, T. A., Elsenbaumer, R. L., Reynolds, J. R., Eds.
Handbook of Conducting Polymers, 2nd ed.; Dekker: New York, 1998. (b)
Kanatzidis, M. G. Chem. Eng. News 1990, 68, 36. (c) MacDiarmid, A. G.
Angew. Chem. 2001, 113, 2649.
(4) (a) Brꢀedas, J. L.; Thꢀemans, B.; Fripiat, J. G.; Andrꢀe, J. M.;
Chance, R. R. Phys. Rev. B 1984, 29, 6761. (b) Samukhin, A. N.; Prigodin,
ꢀ
V. N.; Jastrabιk, L. Phys. Rev. Lett. 1997, 78, 326.
(5) O’Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.;
Gaines, G. L., III; Wasielewski, M. R. Science 1992, 257, 63.
(6) Schelettwein, D.; W€ohrle, D.; Karmann, E.; Melville, U. Chem.
Mater. 1994, 6, 3.
(7) Sadrai, M.; Hadel, L.; Sauers, R. R.; Husain, S.; Krogh-Jespersen,
K.; Westbrook, J. D.; Bird, G. R. J. Phys. Chem. 1992, 96, 7988.
(8) Popovic, Z. D.; Loutfy, R. O.; Hor, A. M. Can. J. Chem. 1985,
63, 134.
(9) (a) Mitschke, U.; B€auerle, P. J. Mater. Chem. 2000, 10, 1471. (b)
Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998,
37, 402. (c) W€urthner, F.; Wortmann, R.; Meerholz, K. ChemPhysChem
2002, 3, 17. (d) Brabꢀec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv.
Funct. Mater. 2001, 11, 15.
(10) (a) Taranekar, P.; Fulghum, T.; Baba, A.; Patton, D.; Advincula,
R. Langmuir 2007, 23, 908. (b) Yassar, A.; Moustrou, C.; Youssoufi,
H. K.; Samat, A.; Guglielmetti, R.; Garnier, F. Macromolecules 1995,
28, 4548.
(11) Lepore, S. D.; He, Y. J. Org. Chem. 2003, 68, 8261.
(12) (a) Taranekar, P.; Fulghum, T.; Baba, A.; Patton, D.; Ponnapati,
R.; Clyde, G.; Advincula, R. J. Am. Chem. Soc. 2007, 129, 12537. (b)
Ponnapati, R.; Felipe, M. J.; Park, J.; Vargas, J.; Advincula, R. Macro-
molecules 2010, 43, 10414. (c) Sebastian, R.; Caminate, A.-M.; Majoral,
J.; Levillain, E.; Huchet, L.; Roncali, J. Chem. Commun. 2000, 507–508.
(13) Hammerschmidt, F.; Hanbauer, M. J. Org. Chem. 2000, 65, 6121.
(14) Jang, S.; Sotzing, G. A. Macromolecules 2002, 35, 7293.
(15) Tian, H.; Liu, P.; Zhu, W.; Gao, E.; Wu, D.; Cai, S. J. Chem.
Mater. 2000, 10, 2708.
(16) (a) Guldi, D. M.; Luo, C.; Swartz, A.; Gꢀomez, R.; Segura, J. L.;
Martín, N. J. Phys. Chem. A 2004, 108, 455. (b) Yamanaka, K.; Fujitsuka,
M.; Araki, Y.; Ito, O.; Aoshima, T.; Fukushima, T.; Miyashi, T. J. Phys.
Chem. A 2004, 108, 250. (c) F€orster, T. Ann. Phys. 1948, 2, 55. (d)
Schenning, A. P. H. J.; v. Herrikhuyzen, J.; Jonkheijm, P.; Chen, Z.;
W€urthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252. (e) Qu,
J.; Pschirer, N. G.; Liu, D.; Stefan, A.; De Schryver, F. C.; M€ullen, K.
Chem.—Eur. J. 2004, 10, 528. (f) W€urthner, F.; Thalacker, C.; Sautter, A.
Adv. Mater. 1999, 11, 754.
(17) (a) W€urthner, F.; Vollmer, M. S.; Effenberger, F.; Emele, P.;
Meyer, D. U.; Port, H.; Wolf, H. C. J. Am. Chem. Soc. 1995, 117, 8090.
(b) Vollmer, M. S.; W€urthner, F.; Effenberger, F.; Emele, P.; Meyer,
D. U.; St€umpfig, T.; Port, H.; Wolf, H. C. Chem.—Eur. J. 1998, 4, 260.
(c) Gonzꢀalez-Rodríguez, D.; Torres, T.; Guldi, D. M.; Rivera, J.;
Echegoyen, L. Org. Lett. 2002, 4, 335. (d) Serin, J. M.; Brousmiche,
D. W.; Frꢀechet, J. M. J. J. Am. Chem. Soc. 2002, 124, 11848.
(18) (a) Taranekar, P.; Baba, A.; Fulghum, T. M.; Advincula, R.
Macromolecules 2005, 38, 3679. (b) Taranekar, P.; Fulghum, T. M.;
Baba, A.; Patton, D.; Advincula, R. Langmuir 2007, 23, 908.
(19) Taranekar, P.; Park, J.-Y.; Fulghum, T.; Patton, D.; Advincula,
R. Adv. Mater. 2006, 18, 2461.
’ CONCLUSION
In conclusion, we have synthesized terthiophene-terminated
dendrons and dendrimers with naphthalene and perylene di-
imide cores. Characterization of the optical and redox properties
of the novel materials shows that it is possible to design materials
with donor and acceptor moieties in the same molecule which
will retain their individual properties. Electrochemical polymer-
ization of these materials provided polymer films which have
been investigated by spectroelectrochemical methods. The films
obtained are highly active in both the p- and n-doping processes.
G1 Per with perylene core and terthiophene dendron periphery
showed dual electrochromism by showing the electrochromic
activity in both cathodic and anodic potential scans. Further
investigation of these materials is still underway.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: radvincula@uh.edu. Fax: 713-743-1755.
’ ACKNOWLEDGMENT
The authors acknowledge funding from NSF CBET-0854979,
DMR-10-06776, and Robert A. Welch Foundation, E-1551.
Technical support from INFICON Inc. and Metrohm is also
acknowledged.
(20) Sch€aferling, M.; B€auerle, P. J. Mater. Chem. 2004, 14, 1132.
(21) Wei, Z.; Xu, J.; Nie, G.; Du, Y.; Pu, S. J. Electroanal. Chem. 2006,
589, 112.
(22) Parker, V. D. J. Am. Chem. Soc. 1976, 98, 98.
(23) (a) Lee, S. K.; Zu, Y.; Herrmann, A.; Geerts, Y.; M€ullen, K.;
Bard, A. J. J. Am. Chem. Soc. 1999, 121, 3513. (b) You, C.-C.; W€urthner,
F. J. Am. Chem. Soc. 2003, 125, 9716.
(24) Viehbeck, A.; Goldberg, M. J.; Kovac, C. A. J. Electrochem. Soc.
1990, 137, 1460.
’ REFERENCES
(1) (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int.
Ed. 1998, 37, 402. (b) Neher, D. Macromol. Rapid Commun. 2001,
22, 1365.
7536
dx.doi.org/10.1021/ma201733a |Macromolecules 2011, 44, 7530–7537