Inorganic Chemistry
COMMUNICATION
’ ACKNOWLEDGMENT
We gratefully acknowledge “Factoría Espa~nola de Cristal-
izaciꢀon” CONSOLIDER INGENIO-2010 and MICINN-Spain
(Project MAT2010-15594) for financial support on this research.
A.D.-M. also thanks ME-Spain for a predoctoral FPU fellowship.
’ REFERENCES
(1) (a) Terrꢀon, A.; Fiol, J. J.; García-Raso, A.; Barcelꢀo-Oliver, M.;
Moreno, V. Coord. Chem. Rev. 2007, 251, 1973–1986. (b) Choquesillo-
Lazarte, D.; Brandi-Blanco, M. P.; García-Santos, I.; Gonzꢀalez-Pꢀerez,
J. M.; Casti~neiras, A.; Niclꢀos-Gutiꢀerrez, J. Coord. Chem. Rev. 2008, 252,
1241–1256. (c) Sanz Miguel, P. J.; Amo-Ochoa, P.; Castillo, O.;
Houlton, A.; Zamora, F. Metal ComplexÀDNA interactions; Hadjiliadis,
N., Sletten, E., Eds.; Wiley-Blackwell: Chichester, U.K., 2009; Chapter 4.
(d) Castillo, O.; Luque, A.; García-Terꢀan, J. P.; Amo-Ochoa, P. Macro-
molecules Containing Metal and Metal-Like Elements; Abd-El-Aziz, A. S.,
Carraher, Ch.E., Pittman, Ch.U., Zeldin, M., Eds.; Wiley: Chichester,
U.K., 2009; Vol. 9, Chapter 9. (e) Lippert, B. Nucleic AcidÀMetal Ion
Interactions; Hud, N. V., Ed.; RSC Publishing: London, 2009; Chapter 2.
(2) (a) Verma, S.; Mishra, A. K.; Kumar, J. Acc. Chem. Res. 2010,
43, 79–91. (b) Patel, D. K.; Domínguez-Martín, A.; Brandi-Blanco,
M. P.; Choquesillo-Lazarte, D.; Nurchi, V. M.; Niclꢀos-Gutiꢀerrez, J.
Coord. Chem. Rev. 2011, DOI:10.1016/j.ccr.2011.05.014.
(3) (a) Chen, Y.; Jian, J. ChemSusChem 2010, 3, 982–988. (b) An, J.;
Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 38–39. (c) Stylianou,
K. C.; Warren, J. E.; Chong, S. Y.; Rabone, J.; Bacsa, J.; Bradshaw, D.;
Rosseinsky, M. J. Chem. Commun. 2011, 47, 3389–3391. (d) Thomas-
Gipson, J.; Beobide, G.; Castillo, O.; Cepeda, J.; Luque, A.; Pꢀerez-Yꢀanez,
S.; Aguayo, A. T.; Romꢀan, P. CrystEngComm 2011, 13, 3301–3305. (e)
Pꢀerez-Yꢀanez, S.; Beobide, G.; Castillo, O.; Cepeda, J.; Luque, A.; Aguayo,
A. T.; Romꢀan, P. Inorg. Chem. 2011, 50, 5330–5332.
Figure 3. Complex molecule of 23.
A search in the CSD reveals only eight copper(II) compounds with
tda, among which only six display tridentate chelating tda. In
these latter compounds, five exhibit tda in fac-O2+S(apical) con-
formation, whereas only one adopts fac-SO+O(apical) confor-
mation. Indeed, tda seems to be unable to act as a tridentate
chelating agent with mer-SO2 conformation, a fact that should be
related to the size of the central S-donor atom. Consequently, the
structure of compound 23 strongly suggests that the main conclu-
sion of this work seems applicable only to ternary complexes
with iminodiacetate and very closely related ligands, such as pdc.
Furthermore, the molecular recognition between hypoxanthine
and IDA-like chelates is radically different from that reported for
adenine. Indeed, four different copper(II) binding patterns [CuÀN7,
CuÀN3, or Cu2(μ2-N7,N9) and Cu2(μ2-N3,N7)] have been
described for adenine depending on the N-alkyl-, N-benzyl-, or
N-phenethyliminodiacetate ligand, respectively.9
Nevertheless, the most remarkable contribution of this work is
the correlation between the chelating ligand conformation and
the metal binding pattern of hypoxanthine as discussed herein.
A recent paper also claimed a unique example where the ligand
conformation drives chiral generation and symmetry-breaking
crystallization, inducing the separation of two enantiomorphs
of a mixed-ligand zinc(II) polymeric complex from an achiral
precursor.10
(4) (a) Schmalle, H. W.; Hanggi, G.; Dubler, E. Acta Crystallogr.
1988, C44, 732–736. (b) Yang, R.-Q.; Xie, Y.-R. Acta Crystallogr. 2007,
E63, o3309.
(5) (a) Kastner, M. E.; Coffey, K. F.; Clarke, M. J.; Edmonds, S. E.;
Eriks, K. J. Am. Chem. Soc. 1981, 103, 5747–5752. (b) Dubler, E.;
Hanggi, G.; Bensch, W. J. Inorg. Biochem. 1987, 29, 269–288. (c) Dubler,
E.; Hanggi, G.; Schmalle, H. Acta Crystallogr. 1987, C43, 1872–1875. (d)
Sletten, E. Acta Crystallogr. 1970, B26, 1609–1614. (e) Dubler, E.;
Hanggi, G.; Schmalle, H. Inorg. Chem. 1990, 29, 2518–2523. (f) Hanggi,
G.; Schmalle, H.; Dubler, E. Acta Crystallogr. 1992, C48, 1008–1012.
(6) Yang, E.-C.; Liu, Z.-Y.; Liu, Z.-Y.; Zhao, L.-N.; Zhao, X.-J. Dalton
Trans. 2010, 8868–8871.
(7) Patel, D. K.; Choquesillo-Lazarte, D.; Gonzꢀalez-Pꢀerez, J. M.;
Domínguez-Martín, A.; Matilla-Hernꢀandez, A.; Casti~neiras, A.; Niclꢀos-
Gutiꢀerrez, J. Polyhedron 2010, 29, 683–690.
’ ASSOCIATED CONTENT
(8) (a) Fernꢀandez, G.; Corbella, M.; Alfonso, M.; Stoeckli-Evans, H.;
Castro, I. Inorg. Chem. 2004, 43, 6684–6698. (b) Moon, D.; Lah, M. S.
Inorg. Chem. 2005, 44, 1934–1940.
(9) (a) Rojas-Gonzꢀalez, P. X.; Castin~eiras, A.; Gonzꢀalez-Pꢀerez, J. M.;
Choquesillo-Lazarte, D.; Niclꢀos-Gutiꢀerrez, J. Inorg. Chem. 2002, 41,
6190–6192. (b) Bugella-Altamirano, E.; Choquesillo-Lazarte, D.; Gonzꢀalez-
Pꢀerez, J. M.; Sꢀanchez-Moreno, M. J.; Marín-Sꢀanchez, R.; Martín-Ramos,
J. D.; Covelo, B.; Carballo, R.; Casti~neiras, A.; Niclꢀos-Gutiꢀerrez, J. Inorg.
Chim. Acta 2002, 339, 160–170.
S
Supporting Information. Formula and structural plots of
b
all of the compounds reported in this work (S1 and S2) as well as
tables with relevant spectral properties and thermal stability
information (S3). This material is available free of charge via
these structures have been deposited with the Cambridge Crys-
tallographic Data Centre (CCDC 695340À695345 and 834987À
835007). The coordinates can be obtained, upon request, from the
Director, Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge, CB2 1EZ, U.K. Additional spectroscopic (FT-IR and
UVÀvis) and thermal (TGA) analyses for the reported compounds
have been carried out by the authors. For further information, please
contact the corresponding author.
(10) Zhou, T.-H.; Zhang, J.; Zhang, H.-X.; Feng, R.; Mao, J.-G.
Chem. Commun. 2011, 47, 8862–8864.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: jniclos@ugr.es.
10551
dx.doi.org/10.1021/ic201918y |Inorg. Chem. 2011, 50, 10549–10551