stirring at room temperature. A solution of HSTEGG3CN 8
(35 mg, 0.032 mmol, 175 equiv./ligand) in 3 mL water was
filtered with a 0.45 mM syringe filter and quickly poured into
the citrate GNP solution under fast stirring. A slight darken-
ing of color occurred after the addition. The mixture was kept
under fast stirring at room temperature for 24 h. The red
solution was centrifuged at 35 000 g for 35 min at 10 1C. The
pellet was redissolved in pure water and dialyzed against pure
water for 24 h (water changed 3 times). The resulting red
solution of GNPG3CN was used as is for characterization.
UV-vis: lSPR/nm 523. DLS: Z-average size = 23.8 nm; PDI
(polydispersity index) = 0.176.
4 I. J. Majoros, C. R. Williams and J. R. Baker, Jr., Curr. Top. Med.
Chem., 2008, 8, 1165–1179.
5 S. J. Guillaudeu, M. E. Fox, Y. M. Haidar, E. E. Dy, F. C. Szoka
and J. M. J. Frechet, Bioconjugate Chem., 2008, 19, 461–469.
6 N. Vijayalakshmi, A. Ray, A. Malugin and H. Ghandehari,
Bioconjugate Chem., 2010, 21, 1804–1810.
7 G. Thiagarajan, A. Ray, A. Malugin and H. Ghandehari, Pharm.
Res., 2010, 27, 2307–2316.
8 L.-A. Tziveleka, A.-M. G. Psarra, D. Tsiourvas and C. M. Paleos,
J. Controlled Release, 2007, 117, 137–146.
9 G. R. Newkome and C. D. Shreiner, Polymer, 2008, 49, 1–173.
10 J. Ruiz, G. Lafuente, S. Marcen, C. Ornelas, S. Lazare, E. Cloutet,
J.-C. Blais and D. Astruc, J. Am. Chem. Soc., 2003, 125,
7250–7257.
11 T. Sakthivel and A. T. Florence, Drug Delivery Technol., 2003,
3(50), 52–56.
12 C. C. Lee, E. R. Gillies, M. E. Fox, S. J. Guillaudeu, J. M.
J. Frechet, E. E. Dy and F. C. Szoka, Proc. Natl. Acad. Sci.
U. S. A., 2006, 103, 16649–16654.
13 V. Torchilin, Eur. J. Pharm. Biopharm., 2009, 71, 431–444.
14 R. E. Serda, B. Godin, E. Blanco, C. Chiappini and M. Ferrari,
Biochim. Biophys. Acta, Gen. Subj., 2011, 1810, 317–329.
15 M. Guo, C. Que, C. Wang, X. Liu, H. Yan and K. Liu, Biomaterials,
2010, 32, 185–194.
16 A. Sharma, K. Neibert, R. Sharma, D. Maysinger and A. Kakkar,
Macromolecules (Washington, DC, U. S.), 2011, 44, 521–529.
17 M. L. Patil, M. Zhang and T. Minko, ACS Nano, 2011, 5, 1877–1887.
18 N. Duceppe and M. Tabrizian, Expert Opin. Drug Delivery, 2010,
7, 1191–1207.
GNPG3NH2 (11). The same overall procedure as for
GNPG3CN 10. 35 mL of citrate GNP was used and a solution
of HSTEGG3NH2 9 (50 mg, 0.044 mmol, 175 equiv./ligand)
in 2 mL water was added. One difference resides in the
pH evolution: after addition of HSTEGG3NH2 9, the pH
increased to slightly basic pH (8–9), so 1N HCl was used to
decrease the pH to around 5, in order to insure optimal
solubility in water. UV-vis: lSPR/nm 525. DLS: Z-average
size = 30.9 nm; PDI (polydispersity index) = 0.144.
19 H.-S. Cho, Z. Dong, G. M. Pauletti, J. Zhang, H. Xu, H. Gu,
L. Wang, R. C. Ewing, C. Huth, F. Wang and D. Shi, ACS Nano,
2010, 4, 5398–5404.
Conclusions
Monodisperse gold nanoparticle-cored PPI dendrimers of
about 20 nm in diameter could be prepared by direct ligand
exchange on citrate GNP. The nitrile terminated dendrimer’s
solubility in water depends on its protonation, and is thus
linked to the pH: GNPG3CN is soluble at pH 4.5 and below,
but flocculates at about pH 5 and above, where its zeta potential
is close to zero. However, the amine terminated dendrimers
remain soluble under basic conditions, up to pH 14. Also,
GNPG3NH2 presents a remarkable stability: it is stable in
1ꢀ PBS buffer, can withstand high salt concentrations, and
can be dried and redissolved without sign of degradation. Such
stability, combined with its ability for lysosomal escape, makes
GNPG3NH2 a candidate of choice as a drug delivery platform.
Finally, the primary amine termini of PPI dendron 9 provide
great convenience for direct derivatization with moieties such as
drugs or targeting entities, for the formation of multifunctional
drug delivery systems with high payloads.
20 J. Panyam, W.-Z. Zhou, S. Prabha, S. K. Sahoo and
V. Labhasetwar, FASEB J., 2002, 16, 1217–1226.
21 C. R. Patra, R. Bhattacharya, D. Mukhopadhyay and
P. Mukherjee, Adv. Drug Delivery Rev., 2010, 62, 346–361.
22 C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco,
A. M. Alkilany, E. C. Goldsmith and S. C. Baxter, Acc. Chem.
Res., 2008, 41, 1721–1730.
23 W. R. Glomm, J. Dispersion Sci. Technol., 2005, 26, 389–414.
24 D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich,
P. C. Patel and C. A. Mirkin, Angew. Chem., Int. Ed., 2010, 49,
3280–3294.
25 Y. Liu, M. K. Shipton, J. Ryan, E. D. Kaufman, S. Franzen and
D. L. Feldheim, Anal. Chem., 2007, 79, 2221–2229.
26 Y.-S. Shon, Nanoparticle-Cored Dendrimers and Hyperbranched
Polymers: Synthesis, Properties, and Applications, Wiley-VCH
Verlag GmbH & Co. KGaA, 2010.
27 G. Jiang, L. Wang and W. Chen, Mater. Lett., 2007, 61, 278–283.
28 B. Huang and D. A. Tomalia, J. Lumin., 2005, 111, 215–223.
29 K. R. Gopidas, J. K. Whitesell and M. A. Fox, J. Am. Chem. Soc.,
2003, 125, 6491–6502.
30 M.-C. Daniel, J. Ruiz, S. Nlate, J. Palumbo, J.-C. Blais and
D. Astruc, Chem. Commun., 2001, 2000–2001.
31 M.-C. Daniel, J. R. Aranzaes, S. Nlate and D. Astruc, J. Inorg.
Organomet. Polym. Mater., 2005, 15, 107–119.
32 E. C. Cutler, E. Lundin, B. D. Garabato, D. Choi and Y.-S. Shon,
Mater. Res. Bull., 2007, 42, 1178–1185.
Acknowledgements
The authors are grateful for the financial support from the
AACR/PanCAN (Career Development Award, grant no.
08-20-25-DANI) and from the Department of Defense (Prostate
Cancer Research Program, CDRMP, grant no. PC081299).
They also would like to acknowledge Josh Wilhide for the
acquisition of the HRMS spectra.
33 R. C. Advincula, Dalton Trans., 2006, 2778–2784.
34 Y. Liu, M. Kim, Y. Wang, Y. A. Wang and X. Peng, Langmuir,
2006, 22, 6341–6345.
35 Y. Zhao, Y. Li, Y. Song, W. Jiang, Z. Wu, Y. A. Wang, J. Sun and
J. Wang, J. Colloid Interface Sci., 2009, 339, 336–343.
36 I. B. Rietveld, W. G. Bouwman, M. W. P. L. Baars and
R. K. Heenan, Macromolecules, 2001, 34, 8380–8383.
37 D. Cakara and M. Borkovec, Croat. Chem. Acta, 2007, 80,
421–428.
38 D. Astruc, C. Ornelas and A. J. Ruiz, J. Inorg. Organomet. Polym.
Mater., 2008, 18, 4–17.
References
39 A.-M. Caminade, C.-O. Turrin, R. Laurent, A. Maraval and
J.-P. Majoral, Curr. Org. Chem., 2006, 10, 2333–2355.
40 G. R. Newkome and C. D. Shreiner, Polymer, 2008, 49, 1–173.
41 B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca, M. R. Imam
and V. Percec, Chem. Rev. (Washington, DC, U. S.), 2009, 109,
6275–6540.
1 C. C. Lee, J. A. MacKay, J. M. J. Frechet and F. C. Szoka, Nat.
Biotechnol., 2005, 23, 1517–1526.
2 H. Patel, J. Patel, R. Patel and K. Patel, Drug Delivery Technol.,
2010, 10(42), 44–47.
3 M. A. Mintzer and M. W. Grinstaff, Chem. Soc. Rev., 2011, 40,
173–190.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 2366–2374 2373