Table 3 Scope of propargylic alcohols
Scheme 2 Proposed catalytic cycle.
Conclusions
In summary, we have documented here a Fe-catalyzed reaction of
propargylic alcohols with 1,1-diaryl alkenes. The propargylation
of propargylic alcohols with 1,1-diaryl alkenes in the presence
of FeCl3·6H2O enabled us to trigger an ene-type substitution
process to furnish a diarylalkenyl propargylic complex framework
in moderate to high chemical yields (43–98%). Studies directed
to clarify the functionalities of these compounds as well as the
extension of this strategy to other substrates is currently underway.
Table 4 Scope of diarylethylenes
Acknowledgements
We gratefully acknowledge the National University of Singa-
pore and Singapore Ministry of Education for financial sup-
port of this work (Academic Research Grants: R143000408133,
R143000408733, R143000443112 and R143000480112).
Notes and references
1 For recent reviews, see: (a) B. Plietker, Iron Catalysis in Organic
Synthesis, Wiley-VCH, Weinheim, 2008; (b) C. Bolm, J. Legros, J. L.
Paih and L. Zani, Chem. Rev., 2004, 104, 6217; (c) S. Enthaler, K. Junge
and M. Beller, Angew. Chem., Int. Ed., 2008, 47, 3317; (d) A. Correa, O.
G. Manchen˜o and C. Bolm, Chem. Soc. Rev., 2008, 37, 1108; (e) B. D.
Sherry and A. Fu¨rstner, Acc. Chem. Res., 2008, 41, 1500; (f) A. A. O.
Sarhan and C. Bolm, Chem. Soc. Rev., 2009, 38, 2730; (g) M. S. Chen
and M. C. White, Science, 2007, 318, 783.
2 For recent examples, see: (a) K. Sonogashira, Y. Tohda and N.
Hagihara, Tetrahedron Lett., 1975, 16, 4467; (b) R. Chinchilla and C.
Na´jera, Chem. Rev., 2007, 107, 874; (c) V. V. Rostovtsev, L. G. Green, V.
V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596;
(d) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057.
good yield (Table 4, 3d¢, 75%), but with poor regioselectivity (Z/E
~ 1 : 1). In addition, heterocyclic ring functionalized propargylic
alcohol 2 also reacted with 1,1-diphenylethylenes and afforded the
desired product in moderate yield (Table 4, 3b¢ and 3c¢).
3 (a) N. Fusetani, M. Sugano, S. Matsunaga and K. Hashimoto,
Tetrahedron Lett., 1987, 28, 4311; (b) A. S. Thompson, E. G. Corley,
M. F. Huntington and E. J. J. Grabowski, Tetrahedron Lett., 1995, 36,
8937; (c) J. L. Wright, T. F. Gregory, S. P. Kesten, P. A. Boxer, K. A.
Serpa, L. T. Meltzer, L. D. Wise, S. A. Espitia, C. S. Konkoy, E. R.
Whittemore and R. M. Woodward, J. Med. Chem., 2000, 43, 3408.
4 For selected examples of Brønsted acid catalyzed propargylation, see:
Our postulated reaction pathways are summarized in Scheme
2. In the initial step, FeCl3 triggers the dehydroxylation of propar-
gylic alcohol 2a to form the intermediary propargyl cation A which
is in equilibrium with the corresponding sp2-hybridized allenylium
cation B. The subsequent ene-type nucleophilic addition of 1,1-
diphenylethylene 1a to allenylium cation B leads to an intermediate
C. Finally, intermediate C undergoes a dehydrogenation step to
offer a diarylalkenyl propargylic complex 3a. The configuration
of the new products was determined by analogy with the X-ray
crystal structure of a suitable single crystal (Table 4, product 3p)
(See Supporting Information†).10
´
(a) R. Sanz, A. Mart´ınez, J. M. Alvarez-Gutie´rrez and F. Rodr´ıguez,
Eur. J. Org. Chem., 2006, 1383; (b) R. Sanz, D. Miguel, A. Mart´ınez,
´
J. M. Alvarez-Gutie´rrez and F. Rodr´ıguez, Org. Lett., 2007, 9, 727;
´
(c) R. Sanz, A. Mart´ınez, D. Miguel, J. M. Alvarez-Gutie´rrez and F.
Rodr´ıguez, Synthesis, 2007, 3252; (d) J. S. Yadav, B. V. S. Reddy, T. S.
Rao, B. B. M. Krishna and G. G. K. S. N. Kumar, Chem. Lett., 2007,
36, 1472; (e) P. Srihari, J. S. S. Reddy, K. Satyanarayana and J. S. Yadav,
Synthesis, 2008, 1853.
5 K. M. Nicolas, Acc. Chem. Res., 1987, 20, 207.
This journal is
The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 225–228 | 227
©